
1 
 

 

 
Asset pricing interpretations of the primary fiscal balance: A case of Japan 

 

 

July 2025 

 

Makoto SAITO1, Kokugakuin University 

 
Abstract: Chien et al. (2025) makes a controversial statement that the huge liabilities owed by 
the Japanese government are well backed by high 𝛽𝛽 assets and claims, whose random payoffs 
evolve according to a net liability version of the primary fiscal balance (PFB). A major empirical 
ground for their statement is that the Japanese government reduced substantially its net 
liabilities by earning enormous capital gains from domestic and foreign risky assets from the 
mid-2010s through the mid-2020s. This paper theoretically demonstrates that if any asset is 
properly priced by a legitimate stochastic discount factor, then high 𝛽𝛽 assets and claims held by 
the government improve the expected PFB, which is targeted by Chien et al., but they have no 
impact on the discounted PFB, which is of our major interest. Even if all parameters of the 𝛽𝛽-
CAPM regression for excess returns on risky assets are considered to the fullest under constant 
discounting, the discounted PFB bears at most moderate 𝛽𝛽 , and still yields negative risk 
premiums. With BoJ’s net assets included, the results do not change at all. In conclusion, the 
present value of the future PFB is far short of the current valuation of the net liabilities. 
 
JEL number: E63, G12, H62. 
Key words: primary fiscal balance, fiscal sustainability, net liability dynamics, 𝛽𝛽-CAPM. 
 

  

 
1  Correspondence to Makoto SAITO, Kokugakuin University, Faculty of Economics, 4-10-28 
Higashi, Shibuya-ku, Tokyo, Japan, 150-8440. makotosaito@kokugakuin.ac.jp 



2 
 
1. Introduction 

Chien et al. (2025) makes a controversial statement that the Japanese government’s net 

liabilities are well backed by high 𝛽𝛽 assets and claims, whose random payoffs evolve according 

to a net liability version of the primary fiscal balance (hereafter, PFB). Consequently, its huge 

gross liabilities are still sustainable with such a high 𝛽𝛽 claim on the fiscal surplus as well as a 

large amount of risky assets with high 𝛽𝛽, which are held by various bodies of the government. 

Their statement could justify gigantic public debt without resorting to the growth exceeding 

interest (𝑔𝑔 > 𝑟𝑟) argument as in Blanchard (2019) and others, or the violation of the transversality 

condition as in Saito (2021) and others. This paper examines their statement with extreme care, 

first theoretically by a standard asset pricing model, and second empirically by a standard 𝛽𝛽-

CAPM regression.2 

A major empirical ground for their statement is that the Japanese general government, 

consisting of the central and local governments, and the social security funds, successfully 

reduced its net liabilities by earning enormous amounts of capital gains from risky assets, both 

domestic and foreign, from the mid-2010s through the mid-2020s. According to the Flow of Funds 

Accounts compiled by the Bank of Japan (BoJ), 3 as shown in Figure 1-1, the gross liabilities (a 

red bar) expanded from the late 1990s to the early 2020s, but the net liabilities (a black line) 

ceased to increase in the early 2010s, and they started to decline from the late 2010s. As Figure 

1-2 demonstrates, such a trend is more eminent in terms of relative to nominal GDP. A reason 

for the difference in a trend between gross liabilities and net ones is that most capital gains from 

risky assets are unrealized and are not included in the revenue of the conventional gross liability 

version of the PFB. On the other hand, such unrealized capital gains are reflected in the market 

valuation of gross assets, which are subtracted from gross liabilities in deriving net ones. 

 

(insert Figure 1-1) 

(insert Figure 1-2) 

 

The government sector indeed allocated a significant portion of gross assets to domestic 

and foreign risky investment. Accordingly, the gross asset side moved quite differently from the 

gross liability side, depending on how equity returns, and exchange rates behaved in the form 

of unrealized returns. As shown in Figure 2-1, the central government, particularly the foreign 

 
2 Huang and Litzenberger (1988) provide one of the most intensive and extensive discussions 
about 𝛽𝛽-CAPM. 
3 See Bank of Japan (1998-2024). 
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exchange fund special account, started to invest in foreign assets and domestic equities from the 

early 2000s, while as shown in Figure 2-2, the social security funds started to shift from the 

Japanese government bonds (JGBs) to domestic equities and foreign assets in the late 2000s. In 

the gross assets of the BoJ as another body of the integrated government, as shown in Figure 2-

3, its investment shifted from treasury bills (short-term JGBs) to long-term JGBs, and domestic 

equities from the early 2010s. But BoJ’s investment in foreign assets had been still negligible. 

 

(insert Figure 2-1) 

(insert Figure 2-2) 

(insert Figure 2-3) 

 

In this paper, we redefine the PFB according to not gross, but net liability dynamics. As in 

Jiang et al. (2024) and Chien et al. (2025), we treat such a net liability version of the PFB as a 

random payoff from the government’s investment in risky assets, and its claim on the fiscal 

surplus, and discount it by a stochastic factor to derive the present value of the future PFB. 

Stepping back from a general setup by Jiang et al. (2024), we adopt as a concrete simple 

specification, a stochastic discount factor implicit in 𝛽𝛽 -CAPM. Another important difference 

between Chien et al. and ours is that the former targets the expected PFB, but the latter focuses 

on the discounted PFB. 

We challenge the above-mentioned controversial statement by Chien et al. in two respects. 

First, if a certain asset held by the government is priced properly by a legitimate stochastic 

discount factor, its high 𝛽𝛽 improves the expected PFB, which is of their interest, but it has no 

impact on the discounted PFB, which is of our interest. Second, if the Euler equation does not 

hold with respect to excess returns, some or all parameters of the 𝛽𝛽-CAPM regression for risky 

excess returns may affect not only the expected PFB, but also the discounted PFB. However, 

even if such parameters are empirically considered to the fullest under constant discounting, 

the estimated discounted PFB bears at most moderate 𝛽𝛽, and still yields negative excess returns 

on the average. With BoJ’s net assets included, these results do not change at all. In conclusion, 

the Japanese government’s liabilities are not backed by risky assets as well as claims on the 

future fiscal surplus and are still unfunded despite active risky investment by various bodies of 

the integrated government. 

This paper is organized as follows. In Section 2, we define the PFB according to the net 

liability dynamics and explore how parameters of the 𝛽𝛽 -CAPM regression affect the present 

value of the future PFB. In Section 3, using the Flow of Funds Accounts, we compute the time 
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series of a net liability version of the PFB, and estimate the present value of the future PFB. In 

Section 4, given our theoretical and empirical exercises, we conclude that the present value of 

the future PFB is far short of the current valuation of the net liabilities.  

 

 

2. A net liability version of the primary fiscal balance 

2.1. Constant discounting as risk neutrality 

The primary fiscal balance (PFB) of the general government (GG) is usually determined 

according to the following gross liability dynamics.  

 

∆𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 = −[(𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 + 𝑟𝑟𝑡𝑡𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 )− (𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺 + ∆𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)] + 𝑟𝑟𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 ,    (1) 

 

where 𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 and 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺 are gross liabilities and gross assets outstanding at the end of time 𝑡𝑡. On the 

expenditure side, 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺  is defined as government expense, which excludes interest payment 

(𝑟𝑟𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺  ) and net asset purchase (∆𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺 ). On the other hand, the revenue side consists of tax 

revenue (𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺) and returns from gross assets (𝑟𝑟𝑡𝑡𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 ). 𝑟𝑟𝑡𝑡𝐷𝐷 and 𝑟𝑟𝑡𝑡𝐺𝐺𝐺𝐺 denote nominal interest rates 

on short-term JGBs and nominal yields on gross assets. Thus, the PFB is defined as follows. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝐺𝐺𝐺𝐺 = (𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 + 𝑟𝑟𝑡𝑡𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 )− (𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺 + ∆𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)     (2) 

 

There are two potential problems in using the above gross liability version of the PFB. First, 

returns from gross assets record only realized returns (𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺  ), and do not include any 

unrealized capital gain or loss (𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 ). Second, net asset purchase (∆𝐴𝐴𝑡𝑡

𝐺𝐺𝐺𝐺,𝑅𝑅) is recorded only 

on a purchase and sale basis, and it does not reflect any market valuation. 

This paper instead proposes a net liability version of the PFB with due consideration for 

unrealized returns from gross assets (𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺  ), as well as the market valuation for net 

liabilities (𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺) and its increment (∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)), in which both 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺 and 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺  are evaluated 

in terms of market prices. That is, the PFB is determined according to the following net liability 

dynamics. 

 

 ∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺) = −�(𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺) + �𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷�𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 � + 𝑟𝑟𝑡𝑡𝐷𝐷(𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 ) (3) 

 

Then, a net liability version of the PFB is now defined as 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺 = (𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺) + �𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷�𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺     (4) 

 

A comparison between (2) and (4) suggests that in the latter, net asset purchase (∆𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺) is 

dropped, but unrealized excess returns (�𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷�𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 ) are included. One important feature 

of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺 is that not gross returns (𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅), which appear in Chien et al.’s net liability 

dynamics,4 but excess returns (𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷) show up in the right-hand side of equation (3) 

or (4). As shown below, it is for this feature that we are interested in not the expected PFB, but 

the discounted PFB. 

Let us assume that agents are risk neutral, and that they discount future payoffs by a 

constant factor. If the future PFB is discounted by a constant interest rate on short-term JGBs 

(𝑟𝑟𝐷𝐷), then equation (3) is rewritten in a forward-looking manner. 

 

𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 = 𝐸𝐸𝑡𝑡−1 �
�(𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺) + �𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝐷𝐷�𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 �+ (𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)
1 + 𝑟𝑟𝐷𝐷

� 

 

Here, both sides of the above equation are divided by one-period lagged gross liabilities 

𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 . Then, it is further developed in a sequential manner. 

 

1 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 = ∑ E𝑡𝑡−1 �

1

�1+𝑟𝑟𝐷𝐷�
𝜏𝜏+1

𝐷𝐷𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �

�𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 �+�𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅+𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅−𝑟𝑟𝐷𝐷�𝐴𝐴𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 ��∞

𝜏𝜏=0 + 1
𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 lim

𝜏𝜏→∞
E𝑡𝑡 �

𝐷𝐷𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 −𝐴𝐴𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

�1+𝑟𝑟𝐷𝐷�
𝜏𝜏+1�.   (5) 

 

Let us assume for simplification that (i) 𝐷𝐷𝑡𝑡
𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  moves around one at a steady state, and 

𝐷𝐷𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 = 1 +∑ 𝜀𝜀𝑡𝑡+𝑖𝑖𝜏𝜏−1

𝑖𝑖=0   with white noise 𝜀𝜀𝑡𝑡+𝑖𝑖 , and (ii) lim
𝜏𝜏→∞

E𝑡𝑡 �
𝐷𝐷𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺 −𝐴𝐴𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺

�1+𝑟𝑟𝐷𝐷�
𝜏𝜏+1� = 0  by a transversality 

condition. By assumption (ii), we suppose that the current valuation of the net liabilities is 

equal to the present value of the future PFB. 
Then, equation (5) is further rewritten as  

 

1 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 = ∑ E𝑡𝑡−1 �

1

�1+𝑟𝑟𝐷𝐷�
𝜏𝜏+1

𝐷𝐷𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 E𝑡𝑡−1+𝜏𝜏 ��

𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 �+ �𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝐷𝐷� 𝐴𝐴𝑡𝑡−1+𝜏𝜏

𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 ��∞

𝜏𝜏=0     

 
4 Chien et al. (2025) formulate as the net liability dynamics, 𝐷𝐷𝑡𝑡 − 𝐴𝐴𝑡𝑡 = (𝐺𝐺𝑡𝑡 − 𝑇𝑇𝑡𝑡) + (1 + 𝑟𝑟𝑡𝑡𝐷𝐷)𝐷𝐷𝑡𝑡−1 −
(1 + 𝑟𝑟𝑡𝑡𝑅𝑅 + 𝑟𝑟𝑡𝑡𝑈𝑈𝑅𝑅)𝐴𝐴𝑡𝑡−1. 
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= ∑ � 1

�1+𝑟𝑟𝐷𝐷�
𝜏𝜏+1 �E𝑡𝑡−1 �

𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 �+ E𝑡𝑡−1 �

𝐴𝐴𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 E𝑡𝑡−1+𝜏𝜏�𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝐷𝐷����∞

𝜏𝜏=0 . (6) 

 

Taking the unconditional expectation for both sides, the present value of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺 relative to 

𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺  leads to 

 

1 − E �𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� = 1

𝑟𝑟𝐷𝐷
�E �𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� + E �𝐴𝐴−1

𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
�𝑟𝑟𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝐷𝐷���.    

 

In this way, the unconditional expectation of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺 relative to 𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺  corresponds to  

 

E �𝑃𝑃𝑃𝑃𝑃𝑃
𝑁𝑁𝑁𝑁

𝐷𝐷−1𝐺𝐺𝐺𝐺
� = E �𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� + E �𝐴𝐴−1

𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
�𝑟𝑟𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝐷𝐷��.    (7) 

 

However, taking risk neutrality seriously as the underlying assumption, average excess 

returns or risk premia should be equal to zero. That is, E𝑡𝑡−1+𝜏𝜏�𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝐷𝐷� in the right-

hand side of equation (6) degenerates to zero. Accordingly, the unconditional expectation of 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺 relative to 𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺  turns out to be E �𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
�, and its present value relative to 𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺  reduced 

to  

 

1 − E �𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� = 1

𝑟𝑟𝐷𝐷
E �𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
�.      (8) 

 

Under constant discounting as risk neutrality, the discounted 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺 as well as its present 

value ( 1 − E �𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� ) have nothing to do with how high excess returns are from GG’s risky 

investment. The only source of positive cash flows from gross liabilities is the average surplus 

in the conventional PFB, or E�𝑇𝑇𝐺𝐺𝐺𝐺 − 𝐺𝐺𝐺𝐺𝐺𝐺� > 0. 

 

2.2. Stochastic discounting as risk aversion 

We below consider risk aversion instead of risk neutrality to evaluate possible impacts from 

excess returns from GG’s risky investment on the present value of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺. We adopt a time-

varying discount factor, which discounts future positive (negative) payoffs more (less) heavily. 
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Concretely, the following stochastic discount factor implicit in 𝛽𝛽-CAPM is chosen for this purpose. 

 

𝐷𝐷𝑃𝑃𝑡𝑡 =
1−

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�

1+𝑟𝑟𝐷𝐷
,       (9) 

 

where 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷 is an excess market return, and it is assumed to follow 

 

𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷 = E�𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷�+ 𝜖𝜖𝑡𝑡𝑚𝑚      (10) 

 

with 𝜖𝜖𝑡𝑡𝑚𝑚  white noise. Under this simplifying assumption, only 𝜖𝜖𝑡𝑡𝑚𝑚  represents the aggregate 

market risk. 

The above stochastic discount factor 𝐷𝐷𝑃𝑃𝑡𝑡 is linear in a random payoff 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷. In addition, 

it is negatively corelated with any excess return 𝑟𝑟𝑡𝑡𝑖𝑖 − 𝑟𝑟𝐷𝐷; that is, it discounts positive (negative) 

realization of excess returns more (less) heavily. 

By construction, 𝐷𝐷𝑃𝑃𝑡𝑡 is orthogonal to excess market returns 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷 on the average. 

 

E𝑡𝑡−1[𝐷𝐷𝑃𝑃𝑡𝑡(𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷)] = E𝑡𝑡−1 �
1−

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�

1+𝑟𝑟𝐷𝐷
(𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷)� = 0   (11) 

 

As a legitimate discount factor, 𝐷𝐷𝑃𝑃𝑡𝑡 should be orthogonal to any other excess return on 

asset 𝑖𝑖 (𝑟𝑟𝑡𝑡𝑖𝑖 − 𝑟𝑟𝐷𝐷) on the average. 

 

E𝑡𝑡−1�𝐷𝐷𝑃𝑃𝑡𝑡(𝑟𝑟𝑡𝑡𝑖𝑖 − 𝑟𝑟𝐷𝐷)� = E𝑡𝑡−1 �
1−

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�

1+𝑟𝑟𝐷𝐷
(𝑟𝑟𝑡𝑡𝑖𝑖 − 𝑟𝑟𝐷𝐷)� = 0 ∀ 𝑖𝑖.  (12) 

 

Using E𝑡𝑡−1(𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡) = Cov𝑡𝑡−1(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡) + E𝑡𝑡−1(𝑥𝑥𝑡𝑡)E𝑡𝑡−1(𝑦𝑦𝑡𝑡) , we can derive 𝛽𝛽 -CAPM from equations 

(10), (11), and (12) as follows. 

 

𝑟𝑟𝑡𝑡𝑖𝑖 − 𝑟𝑟𝐷𝐷 = 𝛽𝛽𝑖𝑖(𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡
𝑖𝑖 ,       (13) 

 

where 𝛽𝛽𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟𝑡𝑡𝑖𝑖−𝑟𝑟𝐷𝐷,𝑟𝑟𝑡𝑡𝑚𝑚−𝑟𝑟𝐷𝐷�
𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�
, and 𝜂𝜂𝑡𝑡𝑖𝑖  is white noise. Note that a constant term is absent in the right-
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hand side of equation (13). 

Let us apply 𝐷𝐷𝑃𝑃𝑡𝑡 =
1−

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�

1+𝑟𝑟𝐷𝐷
  instead of 1

1+𝑟𝑟𝐷𝐷
  to discount the future PFB, which is  

defined by equation (4).  

 

1 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 = ∑ E𝑡𝑡−1 �∏ (𝐷𝐷𝑃𝑃𝑡𝑡+𝑖𝑖)

𝐷𝐷𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺

𝜏𝜏
𝑖𝑖=0 E𝑡𝑡+𝜏𝜏−1 �

�𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 �+�𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑅𝑅+𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅−𝑟𝑟𝑡𝑡+𝜏𝜏𝐷𝐷 �𝐴𝐴𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 ��∞

𝜏𝜏=0    

= ∑ E𝑡𝑡−1 �
𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 ∏ (𝐷𝐷𝑃𝑃𝑡𝑡+𝑖𝑖)𝜏𝜏−1

𝑖𝑖=0 E𝑡𝑡−1+𝜏𝜏 �𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏
�𝑇𝑇𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺 �+�𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑅𝑅+𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅−𝑟𝑟𝑡𝑡+𝜏𝜏

𝐷𝐷 �𝐴𝐴𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 ��∞

𝜏𝜏=0 . 

 

Using equation (13), 𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡+𝜏𝜏𝐷𝐷  is replaced with 𝛽𝛽𝐺𝐺𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 . 

 

1 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 = ∑ E𝑡𝑡−1 �

𝐷𝐷𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 ∏ (𝐷𝐷𝑃𝑃𝑡𝑡+𝑖𝑖)𝜏𝜏−1

𝑖𝑖=0 E𝑡𝑡−1+𝜏𝜏 �𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏
�𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 �+�𝛽𝛽𝐺𝐺𝐺𝐺�𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 −𝑟𝑟𝐷𝐷�+𝜂𝜂𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 �𝐴𝐴𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 ��∞

𝜏𝜏=0   (14) 

 

Noting that E𝑡𝑡+𝜏𝜏−1[𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏(𝛽𝛽𝐺𝐺𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 )] = 0 by equation (11), we simplify equation 

(14) as 

  

1 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 = ∑ E𝑡𝑡−1 �∏ (𝐷𝐷𝑃𝑃𝑡𝑡+𝑖𝑖)E𝑡𝑡−1+𝜏𝜏 �𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏

𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 �𝜏𝜏−1

𝑖𝑖=0 �∞
𝜏𝜏=0 .    (15) 

 

A fundamental reason for the absence of excess returns in equation (15) is that the past 

realization of capital gains and losses have already been reflected in the evaluation of the current 

gross assets 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 . In terms of the future possibilities of capital gains and losses, however, positive 

(negative) excess returns are discounted more (less) heavily under stochastic discounting, and 

the discounted excess returns degenerate to zero. Accordingly, 𝛽𝛽𝐺𝐺𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) has no impact on 

the discounted PFB. 

Regressing 𝑇𝑇𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺  on   𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷, defined by equation (10), leads to  

𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 = 𝛼𝛼𝑇𝑇−𝐺𝐺 + 𝛽𝛽𝑇𝑇−𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡𝑇𝑇−𝐺𝐺,     (16) 

where  𝛽𝛽𝑇𝑇−𝐺𝐺 =
𝐶𝐶𝐶𝐶𝐶𝐶�

𝑇𝑇𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1
𝐺𝐺𝐺𝐺 ,𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷 �

Var�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
, and 𝛼𝛼𝑇𝑇−𝐺𝐺 = E � 𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� − 𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷). 

Replacing 𝑇𝑇𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺  by 𝛼𝛼𝑇𝑇−𝐺𝐺 + 𝛽𝛽𝑇𝑇−𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡𝑇𝑇−𝐺𝐺, we obtain 
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 E𝑡𝑡−1+𝜏𝜏 �𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏
𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 � = E𝑡𝑡−1+𝜏𝜏{𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏[𝛼𝛼𝑇𝑇−𝐺𝐺 + 𝛽𝛽𝑇𝑇−𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡𝑇𝑇−𝐺𝐺]} 

= E𝑡𝑡−1+𝜏𝜏(𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏) �E � 𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� − 𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)�, 

 

again thanks to  E𝑡𝑡+𝜏𝜏−1[𝐷𝐷𝑃𝑃𝑡𝑡+𝜏𝜏(𝛽𝛽𝐺𝐺𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 )] = 0  by equation (11), and by 𝛼𝛼𝑇𝑇−𝐺𝐺 =

E � 𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� − 𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷).  

Applying equation (10), and using E(𝐷𝐷𝑃𝑃) = �1 − �E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷��2

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2 � �1 + 𝑟𝑟𝐷𝐷�� ≈ 1 �1 + 𝑟𝑟𝐷𝐷 + �E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷��2

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2 ��  

when E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)2 is close to Var(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷), equation (15) is further simplified as 

 

1 − E �𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� = ∑ ��1 − �E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷��2

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2 � �1 + 𝑟𝑟𝐷𝐷�� �

𝜏𝜏+1
∞
𝜏𝜏=0 �E � 𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� − 𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)�  

≈ 1

𝑟𝑟𝐷𝐷+
�E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷��

2

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2

 �E � 𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� − 𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)�.   (17) 

 

As equation (17) implies, the present value of  𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑁𝑁𝐺𝐺 relative to 𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺  has nothing to do with 

how high excess returns are from GG’s risky investment. It is even similar to equation (8), and 

the major source of positive cash flows from gross liabilities is again E�𝑇𝑇𝐺𝐺𝐺𝐺 − 𝐺𝐺𝐺𝐺𝐺𝐺� > 0.  

But there are two differences between constant discounting and stochastic discounting. 

First, higher constant discount rates are applied in the latter (𝑟𝑟𝐷𝐷 + �E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷��2

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2 > 𝑟𝑟𝐷𝐷). Second, if 

𝛽𝛽𝑇𝑇−𝐺𝐺 is negative, or 𝑇𝑇𝑡𝑡
𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  is negatively correlated with 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷, then the discounted cash flows 

from net liabilities improve. This consequence is that counter-cyclical 𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺  has an 

insurance effect on the discounted cash flows. 

Restating the above implication, GG’s life-time budget constraint (17) is independent of 

how the GG allocates funds among various risky assets. What does matter directly for GG’s 

budget constraint is not the future possibility of capital gains and losses, but the past realization 

of capital gains and losses, which is reflected in the current valuation of the gross assets, and is 

deducted from the gross liabilities. 
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2.3. A case of the failure of the Euler equations with respect to excess returns 

As demonstrated in the previous subsection, as a consequence of strong restrictions from 

asset pricing theory, realized and unrealized returns from risky investment (𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 ) 

disappear in a transition from equation (6) or (7) to equation (8) under constant discounting, and 

from equation (14) to equation (15) or (17) under stochastic discounting. In principle, such risky 

returns have no impact on the discounted PFB or its present value. 

However, it is well-known that the orthogonality condition between stochastic discount 

factors and excess returns, which is represented by the Euler equation (12), often breaks down 

due to various transaction constraints. In particular, excess returns tend to be too high on the 

average given a certain stochastic factor. Consequently, short in risk-free assets and long in 

risky assets opens arbitrage opportunities for investors who can hold such risky assets. In the 

current cases, the Euler relationship holds in not equality, but inequality as follows. 

 
1

1+𝑟𝑟𝐷𝐷
E𝑡𝑡−1+𝜏𝜏�𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝐷𝐷� = 𝑐𝑐𝑡𝑡𝐺𝐺𝐺𝐺 > 0  

 

  E𝑡𝑡−1+𝜏𝜏 �
1−

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2�𝑟𝑟𝑡𝑡+𝜏𝜏

𝑚𝑚 −𝑟𝑟𝐷𝐷�

1+𝑟𝑟𝐷𝐷
�𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑅𝑅+𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅−𝑟𝑟𝑡𝑡+𝜏𝜏𝐷𝐷 �𝐴𝐴𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 � = 𝑐𝑐𝑡𝑡𝐺𝐺𝐺𝐺 > 0  

 

Suppose that equation (11) holds by construction, but equation (12) fails to hold for some 

transaction constraints as follows. 

 

E𝑡𝑡−1 �
1−

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�

1+𝑟𝑟𝐷𝐷
(𝑟𝑟𝑡𝑡𝑖𝑖 − 𝑟𝑟𝐷𝐷)� = 𝑐𝑐𝑖𝑖 > 0      (18) 

 

Note that 𝑐𝑐𝑖𝑖 is constant over time as a simplifying assumption. 

Together with equation (10), 𝛽𝛽-CAPM is modified from equation (13) to that with a positive 

constant term. 

 

𝑟𝑟𝑡𝑡𝑖𝑖 − 𝑟𝑟𝐷𝐷 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡
𝑖𝑖 ,       (19) 
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where 𝛼𝛼𝑖𝑖 = 𝑐𝑐𝑖𝑖𝐸𝐸[𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷] > 0,5 and 𝛽𝛽𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟𝑡𝑡𝑖𝑖−𝑟𝑟𝐷𝐷,𝑟𝑟𝑡𝑡𝑚𝑚−𝑟𝑟𝐷𝐷�
𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�
. 

If 𝛼𝛼𝑖𝑖 in equation (19) is significantly positive in the 𝛽𝛽-CAPM regression, then investment 

in asset 𝑖𝑖 creates arbitrage opportunities for those who can have long positions in this asset. For 

example, borrowing at 𝑟𝑟𝐷𝐷 , investing loaned money in asset 𝑖𝑖 , and immediately selling it at 

futures results in a budget-free profit for them. 

Using equations (16) and (19), �𝑇𝑇𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺 �+�𝑟𝑟𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺,𝑅𝑅+𝑟𝑟𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅−𝑟𝑟𝑡𝑡+𝜏𝜏
𝐷𝐷 �𝐴𝐴𝑡𝑡−1+𝜏𝜏

𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺   can be replaced by 

�𝛼𝛼𝑇𝑇−𝐺𝐺+𝛽𝛽𝑇𝑇−𝐺𝐺�𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 −𝑟𝑟𝐷𝐷�+𝜂𝜂𝑡𝑡
𝑇𝑇−𝐺𝐺�+�𝛼𝛼𝐺𝐺𝐺𝐺+𝛽𝛽𝐺𝐺𝐺𝐺�𝑟𝑟𝑡𝑡+𝜏𝜏

𝑚𝑚 −𝑟𝑟𝐷𝐷�+𝜂𝜂𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺 �𝐴𝐴𝑡𝑡−1+𝜏𝜏

𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 . We discount this time 𝑡𝑡 + 𝜏𝜏 payoff as of time 𝑡𝑡 − 1 +

𝜏𝜏 by two types of discount factors. First, applying the same stochastic factor implicit in 𝛽𝛽-CAPM, 

we obtain as follows. 

 

E𝑡𝑡+𝜏𝜏−1

⎩
⎨

⎧1−
E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2�𝑟𝑟𝑡𝑡

𝑚𝑚−𝑟𝑟𝐷𝐷�

1+𝑟𝑟𝐷𝐷
�[𝛼𝛼𝑇𝑇−𝐺𝐺 + 𝛽𝛽𝑇𝑇−𝐺𝐺(𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝜂𝜂𝑡𝑡𝑇𝑇−𝐺𝐺] + �𝛼𝛼𝐺𝐺𝐺𝐺+𝛽𝛽𝐺𝐺𝐺𝐺�𝑟𝑟𝑡𝑡+𝜏𝜏

𝑚𝑚 −𝑟𝑟𝐷𝐷�+𝜂𝜂𝑡𝑡+𝜏𝜏
𝐺𝐺𝐺𝐺 �𝐴𝐴𝑡𝑡−1+𝜏𝜏

𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 �

⎭
⎬

⎫
  

=
1−

�E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷��
2

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2

1+𝑟𝑟𝐷𝐷
�E � 𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1
𝐺𝐺𝐺𝐺 � − 𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝛼𝛼𝐺𝐺𝐺𝐺 𝐴𝐴𝑡𝑡−1+𝜏𝜏

𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 �,   (20) 

 

Note that 𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 − 𝑟𝑟𝐷𝐷 is orthogonal to �1 − E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2 (𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝐷𝐷)� (1 + 𝑟𝑟𝐷𝐷)�  on the average. In equation 

(20), 𝛽𝛽𝐺𝐺𝐺𝐺 again disappears, but 𝛼𝛼𝐺𝐺𝐺𝐺 shows up. 

Second, adopting a constant discount factor, we derive the following. 

 

1
1+𝑟𝑟𝐷𝐷

E𝑡𝑡+𝜏𝜏−1 �
�𝑇𝑇𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺−𝐺𝐺𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 �+�𝛼𝛼𝐺𝐺𝐺𝐺+𝛽𝛽𝐺𝐺𝐺𝐺�𝑟𝑟𝑡𝑡+𝜏𝜏𝑚𝑚 −𝑟𝑟𝐷𝐷�+𝜂𝜂𝑡𝑡+𝜏𝜏𝐺𝐺𝐺𝐺 �𝐴𝐴𝑡𝑡−1+𝜏𝜏𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 �  

   = 1
1+𝑟𝑟𝐷𝐷

 ��𝛼𝛼𝑇𝑇−𝐺𝐺 + 𝛽𝛽𝑇𝑇−𝐺𝐺E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)� + �𝛼𝛼𝐺𝐺𝐺𝐺 + 𝛽𝛽𝐺𝐺𝐺𝐺E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)� 𝐴𝐴𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1+𝜏𝜏
𝐺𝐺𝐺𝐺 �,  (21) 

 

where E � 𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1
𝐺𝐺𝐺𝐺 � = 𝛼𝛼𝑇𝑇−𝐺𝐺 + 𝛽𝛽𝑇𝑇−𝐺𝐺E�𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷�. 

All 𝛼𝛼s and 𝛽𝛽s of equations (16) and (19) appear in equation (21). That is, all parameters of 

 
5 Note that 𝛼𝛼𝑖𝑖 in equation (19) is different from 𝛼𝛼𝑖𝑖 = Var𝑡𝑡�𝑟𝑟𝑡𝑡𝑖𝑖−𝑟𝑟𝑑𝑑�

E𝑡𝑡�𝑟𝑟𝑡𝑡
𝑖𝑖−𝑟𝑟𝑑𝑑�

 in Chien et al. (2025). 
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the 𝛽𝛽-CAPM regression show up for not only the expected PFB, but also the discounted PFB. 

The sign in front of 𝛽𝛽𝑇𝑇−𝐺𝐺 is not negative, but positive, because the insurance effect is not present 

any more under constant discounting. 

Rigorously, we have to admit that applying 𝛽𝛽-CAPM to evaluate the expected PFB, and 

applying constant factors to discount it are incompatible with each other. Thus, the second 

method is rather ad-hoc. Nevertheless, we still consider it because equation (21) reflects the 

impact of parameters of the 𝛽𝛽-CAPM regression to the fullest.  

In the first case, the present value of the relative PFB is modified from equation (17) to 

 

1 − E �𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� ≈ 1

𝑟𝑟𝐷𝐷+
�E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷��

2

E�𝑟𝑟𝑚𝑚−𝑟𝑟𝐷𝐷�
2

�E �𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� − 𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝛼𝛼𝐺𝐺𝐺𝐺 𝐴𝐴−1

𝐺𝐺𝐺𝐺

𝐷𝐷−1
𝐺𝐺𝐺𝐺�,  (22) 

 

while in the second case, on the other hand, it modified from equation (8) to 

 

 1 − E �𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� = 1

𝑟𝑟𝐷𝐷
��𝛼𝛼𝑇𝑇−𝐺𝐺 + 𝛽𝛽𝑇𝑇−𝐺𝐺E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)�+ �𝛼𝛼𝐺𝐺𝐺𝐺 + 𝛽𝛽𝐺𝐺𝐺𝐺E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)�E �𝐴𝐴

𝐺𝐺𝐺𝐺

𝐷𝐷𝐺𝐺𝐺𝐺
��. (23) 

 

Unlike in equations (17) and (8), some or all parameters from the 𝛽𝛽 -CAPM regression 

appear in equations (22) and (23). That is, GG’s behavior in risky investment finally appears in 

the evaluation of the present value of the future PFB. In equation (22), how the GG exploits 

arbitrage opportunities with positive 𝛼𝛼𝐺𝐺𝐺𝐺 improves the present value of the PFB. In equation 

(23), though it is quite ad-hoc, how the GG holds risky assets with high 𝛽𝛽𝐺𝐺𝐺𝐺 enhances it. 

In equation (23), the effects of 𝛼𝛼s and 𝛽𝛽s on the discounted PFB is equivalent to those on 

the expected PFB. In this regard, equation (23) is important in comparison between Chien et al. 

and our paper. Chien et al. consider possible effects from the 𝛽𝛽-CAPM regression at the level of 

not the discounted PFB, but the expected PFB.  
More concretely, all 𝛼𝛼s are set at zero in Chien et al. Our 𝛽𝛽𝑇𝑇−𝐺𝐺 corresponds to their 𝐷𝐷𝑡𝑡−𝐴𝐴𝑡𝑡

𝐷𝐷𝑡𝑡
𝛽𝛽𝑡𝑡𝑆𝑆, 

where 𝛽𝛽𝑡𝑡𝑆𝑆  is 𝛽𝛽  of the conventional surplus 𝑇𝑇𝑡𝑡−𝐺𝐺𝑡𝑡
𝐷𝐷𝑡𝑡−𝐴𝐴𝑡𝑡

 , while our 𝐴𝐴𝑡𝑡
𝐷𝐷𝑡𝑡
𝛽𝛽𝐺𝐺𝐺𝐺  corresponds to their 𝐴𝐴𝑡𝑡

𝐷𝐷𝑡𝑡
𝛽𝛽𝑡𝑡𝐴𝐴 . 

According to their calibration (not estimation), both 𝛽𝛽s of the surplus claim and the risky assets 
are quite high. Given 𝐴𝐴𝑡𝑡

𝐷𝐷𝑡𝑡
= 0.66 , 𝛽𝛽𝑡𝑡𝑆𝑆 = 0.45 , and 𝛽𝛽𝑡𝑡𝐴𝐴 = 0.5 , 𝛽𝛽  of the gross liability is equal to 

(1− 0.66) × 0.45 + 0.66 × 0.5 = 0.48 . One of our goals is to compare this number 0.48  with our 

estimate of 𝛽𝛽𝑇𝑇−𝐺𝐺E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝐴𝐴𝐺𝐺𝐺𝐺

𝐷𝐷𝐺𝐺𝐺𝐺
𝛽𝛽𝐺𝐺𝐺𝐺E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷) in equation (23). 

Let us summarize possible implications from this section for the recent Japanese fiscal 
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situation. A net liability version of the PFB, defined by equation (4), differs from its conventional 

gross liability version, defined by equation (2), by including unrealized returns from risky assets. 

However, applying either constant discounting or stochastic discounting to this net liability 

version of the PFB, the present value of the future PFB (equations (8) and (17)) does not depend 

on how much risk the government is taking for financial investment. 

Consequently, in either discounting, the present value of a net liability version of the PFB 

is even closer to that of its gross liability version (equation (2)), which has been chronically 

negative in Japan. In terms of rigorous asset pricing implications, the fact that various bodies 

of the GG started to invest in risky assets from the twenty first century does not matter at all 

for the evaluation of the present value of the future PFB. 

However, such theoretical restrictions often fail to hold in the real world. In particular, the 

Euler equation with respect to excess returns may not be applied to actual asset pricing data. 

Once the deviation of the Euler equation is taken into consideration, how much risk the GG is 

taking is still significant in evaluating the discounted PFB. More concretely, as equations (22) 

and (23) implies, some or all parameters from the 𝛽𝛽-CAPM regression parameters do matter for 

evaluating not only the expected PFB, but also the discounted PFB. Accordingly, we can organize 

a sort of forum where Chien et al.’s calibration is comparable to our estimation. In the next 

section, we empirically explore whether the degree to which the government is making risky 

investment helps have the discounted PFB reversed from negative to positive 

 

 

3. Construction of a net liability version of the PFB from the Flow of Funds Accounts 

3.1. Data sources 

To compute the PFB, we mainly use the quarterly Flow of Funds Accounts, compiled by the 

BoJ. These accounts consist of the stock tables (financial assets and liabilities), the flow tables 

(financial transactions), and the reconciliation tables (reconciliation between flows and stocks) 

from the first quarter of 1998 up to the fourth quarter of 2024. In addition, we draw the series 

of interest paid by the GG from the annual report of the National Accounts 6  from the first 

quarter of 1998 up to the first quarter of 2024. 

An increment in net liabilities of the GG (∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺) ) can be computed by a first-

difference between 𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺  and 𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺   from the stock table. Out of ∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺) , the 

realized components (∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑅𝑅) correspond to the financial surplus/deficit of the flow table, 

while the unrealized components (∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑈𝑈𝑅𝑅) correspond to that of the reconciliation table. 

 
6 See Economic and Social Research (2024). 
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Then, ∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺) = ∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑅𝑅 + ∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑈𝑈𝑅𝑅 holds. 

There are clear seasonal patterns in the realized components (∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑅𝑅). Thus, we 

take one-year moving averages of (∆(𝐷𝐷𝑡𝑡 − 𝐴𝐴𝑡𝑡)𝑅𝑅 for not only the GG, but also the central and local 

governments (denoted by CLGs) and the social security funds (denoted by SSFs). Thank to 

adopting one-year moving average instead of seasonal adjustment, ∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑅𝑅 = ∆(𝐷𝐷𝑡𝑡𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶 −

𝐴𝐴𝑡𝑡𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶)𝑅𝑅 + ∆(𝐷𝐷𝑡𝑡𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶 − 𝐴𝐴𝑡𝑡𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶)𝑅𝑅 holds exactly, but the series starts from not the first quarter of 1998, 

but its fourth quarter, and still ends at the fourth quarter of 2024. Accordingly, the sample 

period is between the fourth quarter of 1998 and the fourth quarter of 2024, which is almost the 

same as that of Chien et al.’s calibration. 

The series of interest paid by the GG (𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺) ends at the first quarter of 2024. Thus, the 

same numbers as the second quarter through the fourth of 2023 are inserted into the 

corresponding quarters of 2024. Because there are also seasonal patterns in 𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺, one-year 

moving average is taken for the series. The sample period is then the same as above.  

Opportunity costs to hold gross assets 𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺  is computed by 𝑟𝑟𝑡𝑡𝐷𝐷𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 = (𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺) 𝐴𝐴𝑡𝑡−1
𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 , where  𝐴𝐴𝑡𝑡−1

𝐺𝐺𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  

is available from the stock table. Similarly, 𝑟𝑟𝑡𝑡𝐷𝐷𝐴𝐴𝑡𝑡−1𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶 = (𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺) 𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 , and 𝑟𝑟𝑡𝑡𝐷𝐷𝐴𝐴𝑡𝑡−1𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶 = (𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺)𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 . 

 

3.2. Observed values of several versions of the PFB 

We can now compute gross and net liability versions of the PFB. From equation (1), we 

derive a gross liability version of the PFB. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑔𝑔𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺) + 𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑅𝑅𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 − ∆𝐴𝐴𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅 = −∆𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 + 𝑟𝑟𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 ,  (1’) 

 

where ∆𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺  can be computed from the stock table, and 𝑟𝑟𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺   is available from the National 

Accounts. 

From equation (3), we derive a net liability version of the PFB. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡 = (𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺) + �𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝑟𝑟𝑡𝑡
𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷�𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 = −∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺) + 𝑟𝑟𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 − 𝑟𝑟𝑡𝑡𝐷𝐷𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺   (3’) 

 

Equation (3’) can be decomposed into realized and unrealized components. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅 = (𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺) + 𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑅𝑅𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 = −∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑅𝑅 + 𝑟𝑟𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺   (3’-1) 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑈𝑈𝑅𝑅 = �𝑟𝑟𝑡𝑡

𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷�𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺 = −∆(𝐷𝐷𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐴𝐴𝑡𝑡𝐺𝐺𝐺𝐺)𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷𝐴𝐴𝑡𝑡−1𝐺𝐺𝐺𝐺    (3’-2) 

 

Equation (3’-2) is further divided into CLGs’ assets and SSFs’ assets. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅 = �𝑟𝑟𝑡𝑡

𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷�𝐴𝐴𝑡𝑡−1𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶 = −∆(𝐷𝐷𝑡𝑡𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶 − 𝐴𝐴𝑡𝑡𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶)𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷𝐴𝐴𝑡𝑡−1𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶  (3’-2-1) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶,𝑈𝑈𝑅𝑅 = �𝑟𝑟𝑡𝑡

𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷�𝐴𝐴𝑡𝑡−1𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶 = −∆(𝐷𝐷𝑡𝑡𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶 − 𝐴𝐴𝑡𝑡𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶)𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷𝐴𝐴𝑡𝑡−1𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶  (3’-2-2) 

 

In addition, realized and unrealized returns from net assets for the BoJ as another body of 

the integrated government (denoted by IG) is determined as follows. 

 

𝑅𝑅𝑡𝑡
𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡 = ∆�𝐴𝐴𝑡𝑡

𝑃𝑃𝐶𝐶𝐵𝐵 − 𝐷𝐷𝑡𝑡
𝑃𝑃𝐶𝐶𝐵𝐵� = ∆�𝐴𝐴𝑡𝑡

𝑃𝑃𝐶𝐶𝐵𝐵 − 𝐷𝐷𝑡𝑡
𝑃𝑃𝐶𝐶𝐵𝐵�

𝑅𝑅
+ ∆�𝐴𝐴𝑡𝑡

𝑃𝑃𝐶𝐶𝐵𝐵 − 𝐷𝐷𝑡𝑡
𝑃𝑃𝐶𝐶𝐵𝐵�

𝑈𝑈𝑅𝑅
  (24) 

 

The BoJ never paid any interest on required and excess reserves up to October 2008. From 

then, it started to pay interest rates equal to only 0.1% or less on excess reserves. BoJ’s gross 

liabilities occupy around 95% of its gross assets. Thus, 𝑟𝑟𝑡𝑡
𝐷𝐷,𝑃𝑃𝐶𝐶𝐵𝐵𝐴𝐴𝑡𝑡−1

𝑃𝑃𝐶𝐶𝐵𝐵 − 𝑟𝑟𝑡𝑡
𝐷𝐷,𝑃𝑃𝐶𝐶𝐵𝐵𝐷𝐷𝑡𝑡−1

𝑃𝑃𝐶𝐶𝐵𝐵 is judgeable to be 

quite small, and the BoJ’s returns on net assets are almost equivalent to its PFB. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡 = 𝑅𝑅𝑡𝑡

𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡 + 𝑟𝑟𝑡𝑡
𝐷𝐷,𝑃𝑃𝐶𝐶𝐵𝐵𝐷𝐷𝑡𝑡−1

𝑃𝑃𝐶𝐶𝐵𝐵 − 𝑟𝑟𝑡𝑡
𝐷𝐷,𝑃𝑃𝐶𝐶𝐵𝐵𝐴𝐴𝑡𝑡−1

𝑃𝑃𝐶𝐶𝐵𝐵 ≈ 𝑅𝑅𝑡𝑡
𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡 

 

Figure 3 depicts the time-series of a net liability version of the PFB without unrealized 

returns for the GG (𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅, a red solid line), its net liability version with them (𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,  a 

black solid line), and its gross liability version (𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑔𝑔𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶, a red dotted line). 

 

(insert Figure 3) 

 

The series of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑔𝑔𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶, either of which does not include any unrealized 

return from gross assets, are quite close to each other. Both series are chronically negative for 

the entire sample period. The only difference between the two is that the latter is lower by net 

asset purchase if ∆𝐴𝐴𝑡𝑡
𝐺𝐺𝐺𝐺,𝑅𝑅 > 0. 

However, once unrealized returns from gross assets are included in the PFB, the series 

become quite volatile, and often positive. In particular, the series of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡 frequently record 

large positive numbers from the mid-2010s. 

Adjusted by one-period lagged gross liabilities 𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺  and converted into annual rates, the 
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sample averages of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  , 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  , and 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑔𝑔𝑟𝑟𝑔𝑔𝐶𝐶𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺   are computed as −2.1%  with standard 

deviation 0.8%, −1.4% with 2.9%, and −3.5% with 1.4%, respectively.  

We have two remarks on these sample averages. First, the sample average of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  is still 

negative even with unrealized returns included. Second, the sample average of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  serves 

as the upper bound for the average of the relative PFB appearing in equations (8) and (17), or 

E �𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
�. Thus, the theoretically consistent present value of the future PFB is largely negative. 

As a byproduct of equation (1’), we can compute the series of quarterly interest rates on 

GG’s liabilities (𝑟𝑟𝑡𝑡𝐷𝐷) given 𝐷𝐷𝑡𝑡−1𝐺𝐺𝐺𝐺 . As shown in Figure 4, the borrowing rate for the GG declined 

substantially. The quarterly rate was around 0.7% in the late 1990s, but it decreased to 0.15% 

in the early 2020s. 

 

(insert Figure 4) 

 

3.3. Interpreting the observed PFB in terms of the 𝜷𝜷-CAPM regression 

Let us interpret the observed PFB in terms of 𝛽𝛽-CAPM.  Excess market returns, 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷, 

are constructed as follows. Market returns from Nikkei 225 are computed on a quarter-end to 

quarter-end basis. Quarterly dividend returns from the first section, or the prime section of the 

Tokyo Stock Exchange are added to market returns, while quarterly yields on one-year JGBs 

are subtracted from them. The sample average of 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷 is 8.1% at annual rates with standard 

deviation 20.4%. Thus, Sharpe ratio is 0.397. 

Both 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺   and 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺   are regressed on 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷 . 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅  and 𝛽𝛽𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅  are the estimated 

coefficient on 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷 , while 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅  and 𝛼𝛼𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅  are the estimated constant term. Estimation 

results are reported in Table 1. 

 

(insert Table 1) 

 

Figures 5-1 and 5-2 draw a scatter diagram of excess market returns as X axis, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  

or 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺   as Y axis. As 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅 < 0  implies, 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺   is negatively, though insignificantly, 
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correlated with 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷. Such slight negative correlation may be interpretable as less cyclical 

tax revenues 𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺. Significantly negative constant (𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅 < 0), however, suggests that 𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺 

is largely negative on the average. 

 

(insert Figure 5-1) 

(insert Figure 5-2) 

 

Once unrealized returns are added to the PFB, estimated 𝛽𝛽𝐺𝐺𝐺𝐺  changes from weakly 

negative to significantly positive, while estimated 𝛼𝛼𝐺𝐺𝐺𝐺 does not change that much, and remains 

negative. That is, the average PFB improves to the extent that the GG takes market risks. At 

the average excess market returns 2.0% as quarterly rates, the average relative PFB improves 

from −0.52% to −0.36%, and it is still negative. The GG seemed not to take market risk that 

much. 

In terms of financial investment by the GG, given 𝛼𝛼𝐺𝐺𝐺𝐺  is close to 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅 , the GG did not 

exploit effective arbitrage opportunities with positive 𝛼𝛼, while given 𝛽𝛽𝐺𝐺𝐺𝐺 > 0 > 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅, the GG held 

assets with high 𝛽𝛽. Let us below explore how financial investment by the GG affects the 𝛽𝛽-CAPM 

regression. 

As equations (3’-2-1) and (3’-2-2) show, unrealized returns of the GG are decomposed into 

those of the CLGs and those of the SSFs. With unrealized returns adjusted by one-period lagged 

gross assets (𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅

𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶,𝑈𝑈𝑅𝑅

𝐴𝐴𝑡𝑡−1
𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 ), the average of the two unrealized returns is 1.0% at annual 

rates with standard deviation 7.7% for the CLGs, and 0.6% with 4.9% for the SSFs. Thus, Sharpe 

ratios for the CLGs and SSFs are 0.131 and 0.127, both of which are quite low compared with 

that of excess market returns 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷, 0.397. 

Those unrealized returns are scattered against 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷 in Figures 6-1 and 6-2. According 

to Table 1, estimated 𝛼𝛼  is almost zero for the CLGs and the SSFs, meaning that the Euler 

equation still holds with respect to excess returns for both sectors, and there is no room for both 

to exploit arbitrage opportunities. On the other hand, estimated 𝛽𝛽 is 0.1374 for the CLGs, and 

0.1831 for the SSFs. The latter estimation results imply that even the SSFs, which have been 

regarded as active institutional investors, did not actually hold high 𝛽𝛽 assets. 

 

(insert Figure 6-1) 

(insert Figure 6-2) 
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Let us look at realized and unrealized returns on net assets held by the BoJ, 𝑅𝑅𝑡𝑡
𝐵𝐵𝑔𝑔𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡

𝐴𝐴𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵. Those 

returns are scattered against 𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷 in Figure 6-3. As shown in Table 1, the estimation result 

of the BoJ is quite different from that of the CLGs or the SSFs. Estimated 𝛽𝛽 of the BoJ is 0.1003; 

it is smaller than those of the CLGs (0.1374) and SSFs (0.1831). But estimated 𝛼𝛼 is 0.0291; it is 

much higher than almost zero 𝛼𝛼 of the CLGs and SSFs. According to these estimation results, 

the BoJ exploited effective arbitrage opportunities with positive 𝛼𝛼, and it earned high excess 

returns without taking much market risk.  

Such arbitrage opportunities might have arisen from almost zero financing costs on the one 

hand, and extremely active investment in the long-term JGBs on the other hand, the latter of 

which generated huge capital gains as ten-year or longer yields declined substantially in the 

2010s. As shown below, however, high excess returns from BoJ’s arbitrage behavior have little 

impact on the PFB of the IG. 

  

(insert Figure 6-3) 

 

3.4. Computing 𝜶𝜶 and 𝜷𝜷 of IG’s PFB 

We below compute 𝛼𝛼  and 𝛽𝛽  for the IG, consisting of the GG and the BoJ, under some 

simplifying assumptions. The PFB relative to gross liabilities for the IG (𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐼𝐼𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 ) is decomposed 

as follows. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐼𝐼𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅

𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐴𝐴𝑡𝑡−1𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅

𝐴𝐴𝑡𝑡−1
𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐴𝐴𝑡𝑡−1𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 + 𝑅𝑅𝑡𝑡

𝐵𝐵𝑔𝑔𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡

𝐴𝐴𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵
𝐴𝐴𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺   

 

The above equation is heroically approximated as 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐼𝐼𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 ≈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡,𝑅𝑅

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅

𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶 E �𝐴𝐴𝑡𝑡−1

𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �+ 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅

𝐴𝐴𝑡𝑡−1
𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 E �𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 � + 𝑅𝑅𝑡𝑡

𝐵𝐵𝑔𝑔𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡

𝐴𝐴𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵 E �𝐴𝐴𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �.   (25) 

 

If excess returns (𝑟𝑟𝑡𝑡
𝐶𝐶𝐺𝐺𝐺𝐺𝐶𝐶,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷, 𝑟𝑟𝑡𝑡

𝑆𝑆𝑆𝑆𝑃𝑃𝐶𝐶,𝑈𝑈𝑅𝑅 − 𝑟𝑟𝑡𝑡𝐷𝐷, and 𝑅𝑅𝑡𝑡
𝐵𝐵𝑔𝑔𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡

𝐴𝐴𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵) are uncorrelated with the asset 

share (𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 , 𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 , and 𝐴𝐴𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 ) as assumed in Sections 2-1 and 2-2, equation (25) is an exact 
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representation. As shown in Figure 7, however, 𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 , 𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 , and 𝐴𝐴𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  increased as asset prices 

appreciated from the mid-2010s, and equation (19) is quite bold approximation. Nevertheless, 

we below assign the sample average 0.300 to E �𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �, 0.252 to E �𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �, and 0.015 to E �𝐴𝐴𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �, 

respectively.  

 

(insert Figure 7) 

 

We have some comments on Figure 7. First, neither 𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  nor 𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  displays any monotonic 

upward trend for the entire sample period. 𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  moves between 0.25 and 0.35, while 𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  has a 

downward trend accompanied by an upward trend. Second, BoJ’s net position 𝐴𝐴𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺  is rather 

small relative to GG’s gross liabilities. 

Given approximation (25), 𝛼𝛼𝐼𝐼𝐺𝐺 and 𝛽𝛽𝐼𝐼𝐺𝐺 are expressed as follows. 

 

𝛼𝛼𝐼𝐼𝐺𝐺 = 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝛼𝛼𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅E �𝐴𝐴𝑡𝑡−1
𝐶𝐶𝐶𝐶𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 � + 𝛼𝛼𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅E �𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑃𝑃

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �+ 𝛼𝛼𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡E �𝐴𝐴𝑡𝑡−1

𝑃𝑃𝐵𝐵𝐵𝐵−𝐷𝐷𝑡𝑡−1
𝑃𝑃𝐵𝐵𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �  (26) 

𝛽𝛽𝐼𝐼𝐺𝐺 = 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅 + 𝛽𝛽𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅E �𝐴𝐴𝑡𝑡−1
𝐶𝐶𝐶𝐶𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 � + 𝛽𝛽𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅E �𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑆𝑆𝑃𝑃

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 � + 𝛽𝛽𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡E �𝐴𝐴𝑡𝑡−1

𝑃𝑃𝐵𝐵𝐵𝐵−𝐷𝐷𝑡𝑡−1
𝑃𝑃𝐵𝐵𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 �  (27) 

 

According to equation (22), only 𝛼𝛼s in the right-hand side of equation (26) are significant 

in the evaluation of the discounted PFB, while as equation (23) implies, not only 𝛼𝛼s in that of 

equation (26), but also 𝛽𝛽 s in that of equation (27) matter. Given that estimated 𝛽𝛽𝑇𝑇−𝐺𝐺  and 𝛼𝛼 s 

(𝛼𝛼𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 , 𝛼𝛼𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅 , and 𝛼𝛼𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡E �𝐴𝐴𝑡𝑡−1
𝑃𝑃𝐵𝐵𝐵𝐵−𝐷𝐷𝑡𝑡−1

𝑃𝑃𝐵𝐵𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 � ) are rather small as reported in Table 1, E �𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� −

𝛽𝛽𝑇𝑇−𝐺𝐺𝐸𝐸(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷) + 𝛼𝛼𝐺𝐺𝐺𝐺 𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1
𝐺𝐺𝐺𝐺 ≈ E �𝑇𝑇

𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
�, and parameters of the 𝛽𝛽-CAPM regression have almost no 

impact on the discounted PFB in equation (22). Thus, we below follow the interpretation of 

equation (23), although the combination of 𝛽𝛽-CAPM and constant discounting is quite ad-hoc. 

As demonstrated by Table 2, substituting estimated 𝛼𝛼s and 𝛽𝛽s from Table 1, and the sample 

averages into the right-hand side of equations (26) and (27), 𝛼𝛼𝐼𝐼𝐺𝐺 is computed as −0.0053, and 𝛽𝛽𝐼𝐼𝐺𝐺 
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as 0.0837. 𝛼𝛼𝐼𝐼𝐺𝐺 is close to 𝛼𝛼𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡 (−0.0051), while 𝛽𝛽𝐼𝐼𝐺𝐺 is a little higher than 𝛽𝛽𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡 (0.0770). 

 

(insert Table 2) 

 

Figure 8 draws four linear functions with  

A) a pair of 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅 and 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅,  

B) a pair of 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅 + 0.3𝛼𝛼𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 and 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅 + 0.3𝛽𝛽𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅,  

C) a pair of 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅 + 0.3𝛼𝛼𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 + 0.252𝛼𝛼𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅 and 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅 + 0.3𝛽𝛽𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 + 0.252𝛽𝛽𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅, and 

D) a pair of 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅 + 0.3𝛼𝛼𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 + 0.252𝛼𝛼𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅 + 0.015𝛼𝛼𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡  and 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅 + 0.3𝛽𝛽𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 +

0.252𝛽𝛽𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅 + 0.015𝛽𝛽𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡.  

 

(insert Figure 8) 

 

Figure 8 illuminates how risky investment by the CLGs, the SSFs, and the BoJ affects the 

risk-return structure on IG’s gross liabilities. Without any risky investment, a linear line is 

slightly downward-sloping. Including risky investment one by one, however, the slope of linear 

lines is steeper and steeper from −0.0051 to 0.0361 by CLGs’ investment, to 0.0822 by SSFs’, and 

to 0.0837 by BoJ’s. The constant terms remain around 0.005.  

If four lines are evaluated at the expected excess market return 2% as quarter rates, the 

expected excess return on GI’s gross liabilities improves from −0.0052 to −0.0045, −0.0041, and 

−0.0036, respectively. Each increment ranges between 0.0004 and 0.0007, and it is rather small. 

Even with all risky investments included, the expected excess return remains negative. It means 

that the government never yields positive cash flow on the average although parameters of the 

𝛽𝛽-CAPM regression for excess returns on risky assets held by the CLGs and the SSFs, and net 

assets held by the BoJ are considered to the fullest. 

In conclusion, the present value of the future 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝐼𝐼𝐺𝐺,𝑛𝑛𝑛𝑛𝑡𝑡 is far short of the current valuation 

of the net liabilities as follows. 

 

1 − E �𝐴𝐴−1
𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� > 0 > 1

𝑟𝑟𝐷𝐷
[𝛼𝛼𝐼𝐼𝐺𝐺 + 𝛽𝛽𝐼𝐼𝐺𝐺E(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐷𝐷)]  

 

In this way, holding high 𝛽𝛽 assets and claims does not help sustain the huge net liabilities. 

 

3.5. Should the Japanese government take much more market risk to make the expected PFB 
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positive? 

Let us compare the above estimation results with Chien et al.’s calibration results. As 

discussed in Section 2.3, Chien et al. set all  𝛼𝛼s at zero. In our estimation, both 𝛼𝛼𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 and 𝛼𝛼𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅 

are close to zero as well. But 𝛼𝛼𝐺𝐺𝐺𝐺,𝑅𝑅  is significantly negative, while 𝛼𝛼𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡  is positive though 

insignificant. On the other hand, they calibrate 𝛽𝛽𝐴𝐴 (𝛽𝛽 of gross assets) to be 0.5. Such 𝛽𝛽 is much 

higher than our estimates 𝛽𝛽𝐶𝐶𝐺𝐺𝐺𝐺,𝑈𝑈𝑅𝑅 = 0.14 , 𝛽𝛽𝑆𝑆𝑆𝑆𝑃𝑃,𝑈𝑈𝑅𝑅 = 0.18 , or 𝛽𝛽𝑃𝑃𝐶𝐶𝐵𝐵,𝑛𝑛𝑛𝑛𝑡𝑡 = 0.10 . In addition, their 

(1− 0.66) × 𝛽𝛽𝑆𝑆 = 0.15 (𝛽𝛽 of the surplus claim) suggests that the primary surplus is highly cyclical, 

while our 𝛽𝛽𝑇𝑇−𝐺𝐺 = −0.005 implies that it is slightly counter-cyclical. Given their calibration, the 

expected PFB is well above zero (2.4% per year), and as far as the expected value is concerned, 

the current net liabilities are sustainable with the future PFB. But their calibration is not 

compatible with the standard 𝛽𝛽-CAPM regression based on the quarterly observations of the 

sample period between 1998 and 2024. 

According to the exercises in Sections 3.3 and 3.4, the IG can make the expected PFB 

positive only if it takes much more market risk. Suppose that E �𝑇𝑇
𝐺𝐺𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺

𝐷𝐷−1𝐺𝐺𝐺𝐺
� = −0.005 , 

E �𝐴𝐴𝑡𝑡−1
𝐶𝐶𝑁𝑁𝐺𝐺

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 + 𝐴𝐴𝑡𝑡−1𝑆𝑆𝑆𝑆𝑆𝑆

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 + 𝐴𝐴𝑡𝑡−1

𝐵𝐵𝑔𝑔𝐵𝐵−𝐷𝐷𝑡𝑡−1
𝐵𝐵𝑔𝑔𝐵𝐵

𝐷𝐷𝑡𝑡−1
𝐺𝐺𝐺𝐺 � = 0.6, and E(𝑟𝑟𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑡𝑡𝐷𝐷) = 0.02. If the IG bodies hold highly risky portfolios 

with 𝛽𝛽 ≥ 0.42, which is five times as large as the current 𝛽𝛽 ≈ 0.08, and comparable to Chien et 

al.’s calibration of 𝛽𝛽𝐴𝐴 = 0.5, then the expected PFB turns out to be positive. In Figure 8, a black 

dotted line represents such high 𝛽𝛽 investment by the IG. 

Do the taxpayers desire such a dramatic change in the government’s asset portfolios? Note 

that 𝛽𝛽𝐺𝐺𝐺𝐺 appears in equation (23) because not stochastic discounting, but constant discounting 

is applied. That is, the IG is risk neutral in the sense that they do not care for how volatile the 

government’s portfolios are. Given quite conservative asset portfolios in the Japanese 

households, it is hard to imagine that the assumption employed in equation (23) is consistent 

with taxpayers’ risk averse attitude. 

Of course, there are alternative interpretations about hypothetical asymmetry between the 

government’s risky portfolios and the households’ conservative portfolios. First, the government 

and the taxpayers are corporative with each other. The households prefer risky portfolios to 

conservative ones, but they cannot hold them due to several constraints. Thus, the government 

would hold risky assets on behalf of the taxpayers. 

Second, the government and the taxpayers are hostile to each other. Again, the households 

are forced to hold conservative portfolios due to several constraints. Many interest groups, 

including financial institutions, govern the government independently of the taxpayers’ interest. 
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The government would hold risky assets at the sacrifice of the forced households, and on behalf 

of these interest groups. According to interpretations by Chien et al., younger and less 

financially sophisticated households correspond to those who are forced to hold conservative 

portfolios, while older and financially sophisticated households to those who belong to interest 

groups. 

 

 

4. Conclusion 

One important message from our theoretical and empirical investigation is summarized as 

follows. In the past decade, enormous amounts of unrealized capital gains were indeed reflected 

in the market valuation of risky assets and contributed to a substantial reduction in the net 

liabilities. It is this valuation improvement that Chien et al. pay a serious attention to. But the 

discounted PFB or its present value is directly determined not by the past realization of capital 

gains, but by the future possibility of capital gains as well as losses. Under stochastic discounting, 

positive (negative) excess returns are discounted more (less) heavily, and accordingly the 

discounted excess returns degenerate to zero. Then, 𝛽𝛽s of the surplus claim and the risky assets 

have no impact on the discounted PFB.  

Under constant discounting in which both positive and negative excess returns are 

discounted equally, on the other hand, there is room for 𝛽𝛽s to affect not only the expected PFB, 

but also the discounted PFB. However, estimated 𝛽𝛽s of the risky assets held by the integrated 

government have limited impacts on the discounted PFB because the government is currently 

taking only the moderate level of 𝛽𝛽  for risky investment. As demonstrated in Section 2, the 

current valuation of the net liabilities has to be sustained largely by the sequence of the 

conventional primary surplus 𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺 − 𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺. Nevertheless, if the government pursues unreasonably 

high 𝛽𝛽 for the dramatic improvement of the expected PFB as implicitly proposed by Chien et al., 

then the taxpayers are forced to take unbearably high risks without any improvement of the 

discounted PFB. 
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