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Abstract

This paper analyzes business cycles in Japan by applying Markov
switching (MS) models to monthly data on the coincident indicator of
composite index (CI) during the period of 1985/01–2025/05 calculated
by Economic and Social Research Institute (ESRI), Cabinet Office,
the Government of Japan. During the latter half of the sample period,
the Japanese economy experienced major shocks such as the global
financial crisis in 2008, the Great East Japan Earthquake in 2011, the
consumption tax hikes in 2014 and 2019, and the COVID-19 pandemic
in 2020. CI fell sharply during these periods, which make it difficult
to estimate business cycle turning points using the simple MS model.
In this paper, the MS model is extended by incorporating Student’s t-
error and stochastic volatility (SV). Since it is difficult to evaluate the
likelihood once SV is introduced, a Bayesian method via Markov chain
Monte Carlo (MCMC) is employed. The MS model with t-error or SV
is shown to provide the estimates of the business cycle turning points
close to those published by ESRI. Bayesian model comparison based
on marginal likelihood provides evidence that t-error is not needed
once SV is introduced. Using the MS model with normal error and
SV, structural changes in CI’s mean growth rates during booms and
recessions are also analyezed and two break points are found in the
both mean growth rates. One is 2008/10 and the other is 2010/02,
during which the mean growth rate during recession falls and that
during boom rises due to the global financial crisis.
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1 Introduction

The Markov switching (MS) model proposed by Hamilton (1989) has fre-
quently been applied to the empirical analysis of business cycles (Kim and
Nelson (1998, 1999a,b), Watanabe (2014) and Ishihara andWatanabe (2015)).
This model produces the posterior probability of boom and recession for each
period, which can be used for dating the business cycle turning points.

This paper analyzes business cycles in Japan by applying Markov switch-
ing (MS) models to monthly data on the coincident indicator of composite
index (CI) during the period of 1985/01–2025/05 calculated by Economic
and Social Research Institute (ESRI), Cabinet Office, the Government of
Japan. During the latter half of the sample period, the Japanese economy
experienced major shocks such as the global financial crisis in 2008, the
Great East Japan Earthquake in 2011, the consumption tax hikes in 2014
and 2019, and the COVID-19 pandemic in 2020. As shown in Figure 1, the
CI fell sharply during these periods. In this paper, we first show that these
large shocks make it difficult to estimate business cycle turning points using
the simple MS model. The simple MS model estimates only the above five
periods in which those large negative shocks occurred as recessions, and es-
timates all other periods as booms. Hence, we extend the simple MS model
by incorporating Student’s t-error and stochastic volatility (SV) and show
that these extended models provide the business cycle turning points close
to those published by the ESRI.

Once SV model is introduced, it is difficult to evaluate the likelihood. We
employ a Bayesian estimation where the parameters and latent variables are
sampled from the posterior distribution using Markov Chain Monte Carlo
(MCMC) techniques and the obtained draws are used for estimating the
parameters. We use the multimove sampler proposed by Kim and Nelson
(1998, 1999a,b) to sample the state variable representing the boom or re-
cession in the MS model and the block sampler proposed by Watanabe and
Omori (2004) to sample the latent volatility in the SV model. We also use
the method proposed by Watanabe (2001) to sample the degree-of-freedom
of the Student’s t-distribution.

Ishihara and Watanabe (2015) has conducted a similar research using
CI during the period of 1985/01–2014/05. This paper extends the sam-
ple period of 1985/01–2025/05, but the difference between this paper and
Ishihara and Watanabe (2015) is not only the sample period. There is a
technical problem in Ishihara and Watanabe (2015). They conduct model
comparison using the marginal likelihood calculated via the modified har-
monic mean method proposed by Geweke (1999) with the complete-data
likelihood, i.e., the joint density of the data and latent variables given the
parameters. Nakajima et al. (2011) show that this method is theoretically
correct, but Chan and Grant (2015) provide evidence that it has a substan-
tial bias and tends to select the wrong model in practice. In this paper,
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we use a different method for calculating the marginal likelihood. For the
MS model without SV, we use the modified harmonic mean method based
on the observed-data likelihood, i.e., the density of the data without the
latent variables. The observed-data likelihood can be calculated using the
Hamilton (1989) filter. Once SV is introduced, it is not straightforward
to calculate the observed-data likelihood. Thus, we use the Chib (1995)
method, where we calculate the observed-data likelihood using the particle
filter. Bayesian model comparison based on marginal likelihood provides
evidence that t-error is not needed once the SV is introduced. Using the MS
model with normal error and SV, structural changes in CI’s mean growth
rates during booms and recessions are also analyezed and two break points
are found in the both mean growth rates. One is 2008/10 and the other is
2010/02, during which the mean growth rate during recession falls and that
during boom rises due to the global financial crisis.

The rest of this article is organized as follows. Next section reviews
the simple MS model and extends it by incorporating with t-error and SV.
Section 3 explains the Bayesian method using MCMC for the analysis of MS
models. The simple and extended MS models are fitted to the CI in Japan
in Section 4. Section 5 concludes.

2 Markov Switching Model

Let yt denote the growth rate of CI and St denote a dummy variable that
takes 0 when the economy is in the recession regime and 1 when the economy
is in the boom regime. The simplest version of MS models assumes that the
mean of yt, which is denoted by µt, may vary depending on St as follows.

yt = µt + ϕ(yt−1 − µt−1) + et, (1)

µt = µ(0)(1− St) + µ(1)St, µ(0) < µ(1), (2)

St =

{
1 boom
0 recession

, (3)

where St is assumed to follow a Markov process with transition probabilities

p(St = 1 | St−1 = 1) = π11,
p(St = 0 | St−1 = 1) = 1− π11,
p(St = 0 | St−1 = 0) = π00,
p(St = 1 | St−1 = 0) = 1− π00.

(4)

It is straightforward to extend the lag-length in equation (1). We, how-
ever, assume that the lag-length is 1 in all analyses. It is also straightforward
to extend such that the other parameters such as ϕ and σ2 may also switch,
but we assume that only µ may switch here.
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Model 1: MS model with normal error and constant volatility
et in equation (1) is the error term. In Model 1, we assume that the

distribution of et is normal with the 0 mean and the constant variance σ2

as follows.
et = σϵt, ϵt ∼ i.i.d. N(0, 1), (5)

where “i.i.d. N(0,1)” represents the identically and independently distributed
standard normal distribution.

Model 2: MS model with t-error and constant volatility
As will be shown in Section 4, this model cannot detect the business

cycle turning points. Therefore, we extend the distribution of ϵt in equation
(5) to a fat-tail distribution. As a fat-tail distribution, we use the Student’s
t-distribution standardized such that the variance is 1 as follows.

et = σϵt, ϵt ∼ i.i.d. standardized t(ν), (6)

where “standardized t(ν)” represents the standardized Student’s t-distribution
with the degree-of-freedom ν. We assume that ν > 2 because the Student’s
t-distribution would not have a finite variance otherwise.

Model 3: MS model with normal error and SV
We also introduce the stochastic volatility (SV) as follows.

et =σtϵt, ϵt ∼ i.i.d. N(0, 1),

log(σ2t ) =ω + ψ{log(σ2t−1)− ω}+ ηt,

ηt ∼ i.i.d. N(0, σ2η), (7)

where the parameter ψ in equation (7) captures the autocorrelation in the
log-volatility.

Model 4: MS model with t-error and SV
We also estimate the MS model with the both t-error and SV by combing

Models 2 and 3.

et =σtϵt, ϵt ∼ i.i.d. standardized t(ν),

log(σ2t ) =ω + ψ{log(σ2t−1)− ω}+ ηt,

ηt ∼ i.i.d. N(0, σ2η). (8)

3 Estimation Method

Once SV is introduced, it is difficult to evaluate the likelihood analytically.
We employ a Bayesian method using MCMC.
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In Models 2 and 4, ϵt can be represented as

ϵt =
√
λtzt, (ν − 2)/λt ∼ χ2(ν). (9)

Following Watanabe (2001), we treat λt as a latent variable.
We explain our estimation method using Model 4. The parameters in

Model 4 are θ = (µ(0), µ(1), ϕ, π00, π11, ν, ω, ψ, σ
2
η). We sample these param-

eters from their posterior distribution using MCMC. The Gibbs sampler,
which is one of MCMC, enables us to sample from the joint posterior dis-
tribution by sampling sequentially from the full conditional posterior dis-
tributions. The full conditional posterior distribution of a parameter (or a
set of parameters) is the distribution conditional on all other parameters
and data. Let ht = log(σ2t ) and define y = (y1, . . . , yT ), S = (S1, . . . , ST ),
λ = (λ1, . . . , λT ) and h = (h1, . . . , hT ) where T is the sample size. Dealing
with the latent variables S, λ and h like parameters, we sample sequentially
from the following full conditional densities.

f(S|θ,λ,h,y) (10)

f(µ(0), µ(1)|θ/(µ(0),µ(1)),S,λ,h,y) (11)

f(ϕ|θ/ϕ,S,λ,h,y) (12)

f(π00, π11|θ/π00,π11 ,S,λ,h,y) (13)

f(λ|θ,S,h,y) (14)

f(ν|θ/ν ,S,λ,h,y) (15)

f(h|θ,S,λ,y) (16)

f(ω|θ/ω,S,λ,h,y) (17)

f(ψ|θ/ψ,S,λ,h,y) (18)

f(σ2η|θ/σ2
η
,S,λ,h,y), (19)

where θ/x is the set of all parameters except x.
In Bayesian estimation, we must set the prior distribution of the param-

eters. Assuming that the prior distributions of (µ(0), µ(1))′, ϕ, σ2e , π00, π11,
ν, ω, ψ and σ2η are mutually independent, we set the prior distributions as
follows.

(µ(0), µ(1))′ ∼N (Mµ,Σµ) I
[
µ(0) < µ(1)

]
, ω ∼ N(mω, vω),

ϕ+ 1

2
∼Beta(αϕ, βϕ),

ψ + 1

2
∼ Beta(αψ, βψ),

π00 ∼Beta(u00, u01), π11 ∼ Beta(u11, u10),

σ2η ∼IG(kη, θη), ν ∼ Gamma(kν , θν)I[ν > 2],

where I[ · ] is the indicator function that takes 1 when the inequality in the
parenthesis is satisfied and 0 otherwise.
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The prior of (µ(0), µ(1))′ is the bivariate normal distribution truncated
such that µ(0) < µ(1) is satisfied. Then, the full conditional distribution (11)
is also the truncated normal. The prior of ω is the normal. Then, (17) is
the same. The prior of σ2η is the inverted gamma, so that σ2η > 0. Then,
(19) is the same. It is straightforward to sample from these distributions.

For the prior distributions of ϕ and ψ, we assume that (ϕ + 1)/2 and
(ψ + 1)/2 follow the beta distributions for stationarity, i.e., |ϕ| < 1 and
|ψ| < 1. The priors of (π00, π11)

′ are the independent beta, distributions, so
that 0 < π00 < 1 and 0 < π11 < 1. The prior distribution of ν is the gamma
distribution truncated such that ν > 2 is satisfied. The full conditional
distributions of ϕ, ψ, (π00, π11)

′ and ν distributions are non-standard. We
sample ϕ and ψ from (12) and (18) using the Metropolis-Hastings (MH) al-
gorithm where the proposal density is selected following Chib and Greenberg
(1994) and ν from (15) using the Acceptance-Rejection Metropolis-Hastings
(ARMH) algorithm where the proposal density is selected following Watan-
abe (2001). We set

p(Si|π00, π11) =
1− πii

2− π00 − π11
(i = 0, 1).

Then, the full conditional density of (π00, π11)
′ is given as follows.

f(π00, π11|θ/(π00,π11),S,λ,h,y) ∝
(1− π00)

S1(1− π11)
1−S1

2− π00 − π11

× πu00+n00
00 (1− π00)

u01+n01

× πu11+n11
11 (1− π11)

u10+n10 , (20)

where nij refers to the number of transitions from state i to j, which can
be easily computed for given S. If we neglect the term (1 − π00)

S1(1 −
π11)

1−S1/(2−π00−π11), (20) will collapse to independent Beta distributions.
Since 0 < (1−π00)S1(1−π11)1−S1/(2−π00−π11) < 1, we use the Acceptance-
Rejection (AR) algorithm to sample from (20), where we sample a proposal
from the independent Beta distributions and accept it with probability (1−
π00)

S1(1− π11)
1−S1/(2− π00 − π11).

We must also sample the latent variables S, λ and h from their full
conditional densities (10), (14) and (16) respectively. We sample S from (10)
using the multimove sampler proposed by Kim and Nelson (1998) (see also
Chapter 9 in Kim and Nelson (1999b)). We use the block sampler proposed
by Watanabe and Omori (2004) to sample h from (16). It is straightforward
to sample λ from (14) because the full conditional distributions of λ =
(λ1, . . . , λT ) are mutually independent and given as

(ϵ2t + ν − 2)/λt ∼ χ2(ν + 1), (t = 1, . . . , T ). (21)

In Bayesian econometrics, model comparison is conducted using marginal
likelihood. A widely used method for calculating marginal likelihood is
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the modified harmonic mean proposed by Geweke (1999). Let g(θ) be a
probability density function. Then, marginal likelihood can be estimated as
follows.

f(y) =
1

E
[

g(θ)

f(y|θ)f(θ)

] ≈

[
1

M

M∑
i=1

g(θi)

f(y|θi)f(θi)

]−1

(22)

Geweke (1999) proposes to make g(θ) the truncated normal denstity as
follows.

g(θ) = τ−1(2π)−k/2|Σ|−1/2 exp

[
−1

2
(θ − µ)′Σ−1(θ − µ)

]
×I

[
(θ − µ)′Σ−1(θ − µ) ≤ F−1

χ2
k
(τ)

]
(23)

where k is the number of parameters and F−1
χ2
k
(τ) is the inverse function of

the χ2 cdf with the degree-of-freedom k and µ and Σ are the sample mean
and covariance matrix of θ sampled from the posterior distribution using
MCMC and I[ · ]is the indicator function that takes 1 if the condition in the
bracket is satisfied and 0 otherwise.

Watanabe (2014) and Ishihara and Watanabe (2015) use the complete-
data likelihood, i.e., the joint density of the data and latent variables given
the parameters instead of the observed-data likelihood, i.e., the density of
the data without the latent variables f(y|θ). Nakajima et al. (2011) show
that this method is theoretically correct, but Chan and Grant (2015) pro-
vide evidence that it has a substantial bias and tends to select the wrong
model in practice. For models 1 and 2, we use the observed-data likelihood,
which can be calculated using the Hamilton (1989) filter. Once stochatic
volatility is introduced, it is not straightforward to calculate the observed-
data likelihood. Thus, we use the Chib (1995) method as follows. From the
Bayes theorem, marginal likelihood can be represented as follows.

log f(y) = log f(y|θ̂) + log f(θ̂)− log f(θ̂|y) (24)

We calculate the observed-data likelihood f(y|̂θ) using Particle filter (Pitt
and Shephard (1999)). The log of the posterior density can be calculated
using the following equation.

log f(θ̂|y) = log f(θ̂1|y)
k∑
i=2

log f(θ̂i|θ̂1, . . . , θ̂i−1,y) (25)

Following Ishihara and Watanabe (2015), we also analyze structural
changes in the mean growth rates µ(0) and µ(1) in equation (2). Assum-
ing that only µ(0) and µ(1) in equation (2) are subject to structural changes,
we give the subscript t to µ, µ(0) and µ(1) as follows.

µt = µ
(0)
t (1− St) + µ

(1)
t St, µ

(0)
t < µ

(1)
t (2’)
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Let Dt denote the number of structural changes up to timet and n denote
the total number of structural changes during the sample period. Then, we

can define µ
(0)
t and µ

(1)
t as follows.

µ
(0)
t =



µ(00), Dt = 0

µ(01), Dt = 1
...

µ(0i), Dt = i
...

µ(0,n−1), Dt = n− 1

µ(0n), Dt = n

, µ
(1)
t =



µ(10), Dt = 0

µ(11), Dt = 1
...

µ(1i), Dt = i
...

µ(1,n−1), Dt = n− 1

µ(1n), Dt = n

(26)

Assuming that Dt follows an irreversible Markov process, we express the
transition probabilities as follows.

p(Dt = 0 | Dt−1 = 0) = q00,
p(Dt = 1 | Dt−1 = 0) = 1− q00,
p(Dt = 1 | Dt−1 = 1) = q11,
p(Dt = 1 | Dt−1 = 0) = 1− q11,

...
p(Dt = n− 1 | Dt−1 = n− 1) = qn−1,n−1,
p(Dt = n | Dt−1 = n− 1) = 1− qn−1,n−1,
p(Dt = n | Dt−1 = n) = 1

(27)

We choose the total number of structural changes n using marginal likelihood
calculated as mentioned above.

4 Empirical Analysis

4.1 Data

We use the monthly data on the coincident indicator of the composite index
(CI) in Japan. ESRI calculates two types of CI with and without outlier
replacement. We use CI with outlier replacement. This data are plotted
in Figure 1 where the shadow areas are the recession periods published by
ESRI. We use the growth rate of CI for yt. We calculate the growth rate of
CI as the percentage log difference of CIs in two consecutive periods, which
is plotted in Figure 2.

[Insert Figure 1]

[Insert Figure 2]

[Insert Table 1]
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The descriptive statistics of the growth rate of CI are summarized in
Table 1. The mean is not significantly different from 0. The kurtosis is
significantly larger than 3, showing that the growth rate of CI is more lep-
tokurtic than the normal distribution. The skewness is significantly nega-
tive, indicating that the growth rate of CI is negatively skewed. We do not,
however, take account of the skewness in this paper. The Jarque-Bera (JB)
statistic is so large that it rejects the null hypothesis of normality strongly.
LB(10) is the Ljung-Box statistics adjusted for heteroskedasticity following
Diebold (1988) to test the null hypothesis of no autocorrelations up to 10
lags. According to the values of LB(10), the null hypothesis is rejected at
the 1% significance level. The autocorrelation in yt may fully or partly be
explained by the switch in its mean.

4.2 Estimation results for the simple MS model

We first estimate the simple MS model with normal error and constant
volatility (Model 1). The parameters in Model 1 are (µ(0), µ(1), ϕ, σ2, π00, π11),
whose prior distributions are set as follows.

(µ(0), µ(1))′ ∼ N

([
−1
1

]
,

[
10 0
0 10

])
I
[
µ(0) < µ(1)

]
,

ϕ+ 1

2
∼ Beta(1, 1), σ2 ∼ IG(6, 4),

π00 ∼ Beta(9, 1), π11 ∼ Beta(9, 1).

We throw away the first 5, 000 draws of all parameters as burn-in and use
the next 10, 000 draws for the parameter estimation.

To analyze the impact of large shocks, we estimate the model using the
subsample 1985/02–2008/08, which is prior to large shocks, as well as the
full sample 1985/02–2015/05.

[Insert Figure 3]

Figures 3 depicts the posterior probabilities of recession for each period
estimated using the subsample and the full sample respectively. The pos-
terior probabilities of recession for the subsample almost coincide with the
recession periods published by ESRI. Those for the full sample are close to
0 except the periods of the global financial crisis in 2008, the Great East
Japan Earthquake in 2011, the consumption tax hikes in 2014 and 2019, and
the COVID-19 pandemic in 2020 when they are close to 1. The negative
impact of these events is so large that the simple MS model leads to the
result that only those five periods are in the recession regime and all other
periods are in the boom regime.
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The estimation result of each parameter in Model 1 is summarized in
Table 2. The mean and standard deviation (SD) are calculated as the sam-
ple mean and standard deviation of the 10, 000 draws of each parameter
after burn-in. The standard error (SE) of sample mean is calculated using
the Parzen window because the draws sampled using MCMC are autocor-
related. The 95% Bayesian credible interval is obtained as the 2.5th and
97.5th percentiles of the 10, 000 draws of each parameter. CD is the con-
vergence diagnostic statistic proposed by Geweke (1992), whose asymptotic
distribution is the standard normal if the draws have converged to the ones
from the posterior distribution. The standard error of CD statistic is also
calculated using the Parzen window. IF is the inefficiency factor proposed by
Chib (2001). If this is equal to 2, it implies that the number of draws must
be twice as much as that of random sampling to make the both standard
errors the same. The inefficiency factor increases with the autocorrelation.

[Insert Table 2]

According to the CD values, the null hypothesis that the 10, 000 draws
used for estimation have converged to the ones from the posterior distribu-
tion is accepted for all parameters in the both subsample and full sample.
The IF values for all parameters are small, indicating that the sampling
method is efficient. The mean and 95% interval of µ(0) in the full sample
are much smaller than those in the subsample, showing that the negative
impact of the financial crisis and the Tohoku earthquake on the growth rate
of CI is large. The mean and 95% interval of ϕ are negative in the subsample
while they are positive in the full sample.

4.3 Estimation results for the extended MS model

Next, we estimate the extended models. The new parameter in the MS
model with t-error and constant volatility (Model 2) is ν, which is the degree-
of-freedom of the Student’s t-distribution. Its prior is set as follows.

ν ∼ Gamma(1, 0.1)I[ν > 2].

The priors for all other parameters are set as the same as those in Model 1.
The new parameters in the MS model with normal error and SV (Model 3)
are (ω, ϕ, σ2η). Their priors are set as follows.

ω ∼ N(0, 10),
ψ + 1

2
∼ Beta(2, 1), σ2η ∼ IG(6, 4).

The priors for all other parameters are set as the same as those in Model 1.
The priors of the parameters in the MS model with t-error and SV (Model
4) are set as the same as before. We throw away the first 10, 000 draws of
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all parameters as burn-in and use the next 10, 000 draws for the parameter
estimation.

Tables 3–5 summarize the estimation results for the extended MS models
using the full sample. According to the CD values, the null hypothesis
that the 10, 000 draws used for estimation have converged to the ones from
the posterior distribution is accepted at the 5% significance level for all
parameters in all models. The IF values for all parameters are larger than
those in Model 1, but they are still not so large indicating that the sampling
method we use is efficient. The mean and 95% interval of µ(0) and π00
are small in Model 1 for the full sample, but in all extended models, they
recover close to those in Model 1 for the subsample prior to large shocks. In
all extended models, the mean of ϕ is negative. The mean of ν in Model 4 is
30.2283 while that in Model 2 is 2.8527. If volatility changes, the distribution
of et = σtϵt becomes leptokurtic even if the distribution of ϵt is normal. The
leptokurtosis may be captured by changes in volatility. This is the reason
why the mean of ν increases once SV is introduced. The means of ψ are
0.8640 and 0.8540 in Models 3 and 4 respectively, indicating that shocks
to volatility are persistent although the persistence is small compared with
financial volatility.

[Insert Table 3]

[Insert Table 4]

[Insert Table 5]

For model comparison, we calculate the log marginal likelihoods for all
models using the methods explained in Section 3. Table 6 shows the result.
We do not report their standard errors because they are close to 0. The
log marginal likelihood in Model 3 is significantly larger than those of other
models. The conclusion must be that the MS model with normal error and
SV (Model 3) fits the data best.

[Insert Table 6]

[Insert Figure 4]

[Insert Figure 5]

[Insert Figure 6]

Figure 4–6 depicts the posterior probabilities of recession for each period
estimated by Models 2–4. All models provide the similar posterior proba-
bilities. As is shown in Figure 3, the simple MS model with normal error
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and constant volatility predicts that the periods of large shocks are in the
recession regime, which does not hold true once t-error or SV is introduced.
Using the posterior probabilities of recession, we estimate the business cycle
turning points as follows. Let p̂(St = 0|y) be the estimated probability of
recession for period t. We define t as peak if p̂(St−1 = 0|y) < 0.5 and p̂(St =
0|y) > 0.5 and as trough if p̂(St−1 = 0|y) > 0.5 and p̂(St = 0|y) < 0.5.
Table 7 shows the result. The turning points estimated by Models 2–4 are
close to those by ESRI except that Model 4 estimates 2015/08 as peak and
2016/03 as trough.

[Insert Table 7]

[Insert Figure 7]

Figure 7 plots the posterior mean of volatility σ2t estimated using Model
3 (solid line) and Model 4 (dotted line). During the periods of large shocks,
the posterior means of volatility estimated by the both models jumps up.
The difference in the posterior mean of volatility between Models 3 and 4 is
negligible because the degree of freedom ν of the t-distribution in Model 4 is
so large that it is no different from using the standard normal distribution.

Since Model 3 (normal error and SV) fits the data best, using this model,
we analyze structural changes in in the mean growth rates µ(0) and µ(1) in
Table 8 shows the log marginal likelihood for each number of break points
between 0 and 4. According to the table, the log marginal likelihood of the
model with two break points is the highest. Hereinafter, the model with two
structural change points added to model 4 will be called model 5.

[Insert Table 8]

[Insert Figure 8]

Figure 8 shows the posterior distribution of each structural change point
estimated from Model 5 with two structural change points. These are the
10,000 samples after the burn-in of D̃T , and since there are two ts where
Dt−1 < Dt, these were extracted and their respective histograms were
drawn. The peak of the posterior distribution of the first structural change
point is in 2008/10 after the Lehman Shock, and the peak of the posterior
distribution of the second structural change point is in 2010/02.

Table 9 shows the parameter estimation results for model 5 with two
structural change points. Comparing the posterior means of µ(00) and µ(01)

and those of µ(10) and µ(11), we can see that at the first structural change
point, the mean growth rate during recessions declines and that during
booms rises. Comparing the posterior means of µ(01) and µ(02) and those
of µ(11) and µ(12), we can see that at the second structural change point,
the mean growth rate during recessions rises and that during expansions
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falls. These results show that this structural change captures the instability
of economic fluctuations during financial crises and the subsequent recovery
periods. µ(01) and µ(02) have large standard errors and standard deviations,
but this is thought to be because the period of the economic downturn be-
tween the first and second structural turning points and the period of the
economic downturn after the second structural turning point are short, and
the number of samples that can be used to estimate µ(01) and µ(02) is small.

[Insert Table 9]

[Insert Figure 10]

Table 9 shows the business cycle turning points estimated by Model
5 (normal error error + stochastic volatility + 2 change points). This
model produces the estimates of peak and trough similar to those published
by ESRI and estimated by other models except that this model estimates
2015/02 as peak and 2016/06 as trough.

5 Conclusion

We analyze the business cycles in Japan by applying MS models to the
growth rate of the coincident indicator of CI during the period of 1985/01–
2025/05 calculated by ESRI. We first show that the impact of the global
financial crisis in 2008, the Great East Japan Earthquake in 2011, the con-
sumption tax hikes in 2014 and 2019, and the COVID-19 pandemic in 2020
on this index is so large that the simple MS model with the normal error and
constant volatility cannot detect the business cycle turning points properly.
We extend the MS model by incorporating t-error and SV and employ a
Bayesian method via MCMC for the analysis of the extended models. We
show that the MS model with t-error or SV provides the estimates of the
business cycle turning points close to those published by ESRI. The marginal
likelihoods provide evidence that the MS model with normal error and SV
fits the data best.

We did not take account of skewness in this article although the growth
rate of CI is negatively slewed (see Table 1). We should also use skewed
distributions such as skew t-distributions (see Aas (2005), Azzalini and Cap-
itano (2003) and Fernández and Steel (1998)).
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Table 1: Descriptive statistics of the growth rate of CI

Mean SD Skewness Kurtosis JB LB(10)

0.0511 1.4889 -2.2838 16.9305 4334.24 22.38
(0.0677) (0.1113) (0.2227)

The sample period is 1985/2–2025/05 and the sample size is 484. The
numbers in parentheses are standard errors. SD is the standard de-
viation. JB is the Jarque-Bera statistic to test the null hypothesis of
normality. LB(10) is the Ljung-Box statistics adjusted for heteroskedas-
ticity following Diebold (1988) to test the null hypothesis of no auto-
correlations up to 10 lags.
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Table 2: Estimation result for Model 1 (normal error and constant volatility)

Subsample (1985/02–2008/08)
Mean SE SD 95% Interval CD IF

µ(0) -0.7481 0.0020 0.1132 [-0.9841, -0.5381] -0.73 2.05

µ(1) 0.3830 0.0009 0.0550 [0.2768, 0.4928] -0.63 2.55
ϕ -0.2941 0.0007 0.0610 [-0.4109, -0.1714] 1.71 1.55
σ2 0.6954 0.0007 0.0617 [0.5821, 0.8267] -1.70 1.46
π00 0.9323 0.0005 0.0335 [0.8517, 0.9806] -1.36 1.12
π11 0.9698 0.0003 0.0139 [0.9368, 0.9903] 0.45 3.67

Full Sample (1985/02–2025/05)
Mean SE SD 95% Interval CD IF

µ(0) -6.7753 0.0070 0.4863 [-7.7374, -5.8170] -0.56 2.28

µ(1) 0.1741 0.0004 0.0605 [0.0535, 0.2931] -0.20 1.11
ϕ 0.1257 0.0004 0.0472 [0.0318, 0.2165] -0.52 1.77
σ2 1.3114 0.0010 0.0846 [1.1554, 1.4870] 1.82 1.30
π00 0.7337 0.0009 0.1024 [0.5147, 0.9064] 0.54 1.46
π11 0.9900 0.0000 0.0046 [0.9793, 0.9969] -0.43 1.63

SE is the standard error of mean and SD is the standard deviation. CD is
the convergence diagnostic statistics proposed by Geweke (1992). IF is the
inefficiency factor proposed by Chib (2001).

Table 3: Estimation result for Model 2 (t-error and constant volatility)

Mean SE SD 95% Interval CD IF

µ(0) -0.5870 0.0061 0.1536 [-0.9150, -0.3114] -0.79 14.60

µ(1) 0.4486 0.0028 0.0740 [0.3108, 0.6022] -0.65 12.54
ϕ -0.0526 0.0013 0.0523 [-0.1546, 0.0501] -0.79 7.55
σ2 1.9650 0.0025 0.1467 [1.6980, 2.2728] -1.24 2.09
π00 0.9192 0.0005 0.0296 [0.8483, 0.9653] 0.11 3.84
π11 0.9652 0.0004 0.0154 [0.9288, 0.9881] 1.16 8.25
ν 2.8527 0.0103 0.1558 [2.6013, 3.2064] 0.28 34.16

SE is the standard error of mean and SD is the standard deviation. CD is
the convergence diagnostic statistics proposed by Geweke (1992). IF is the
inefficiency factor proposed by Chib (2001).
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Table 4: Estimation result for Model 3 (normal error and stochastic volatil-
ity)

Mean SE SD 95% Interval CD IF

µ(0) -0.4597 0.0080 0.1884 [-0.8770, -0.1455] -0.29 31.75

µ(1) 0.3892 0.0022 0.0646 [0.2710, 0.5219] -0.34 20.52
ϕ -0.1368 0.0011 0.0584 [-0.2520, -0.0240] 0.79 7.34
π00 0.9175 0.0006 0.0325 [0.8399, 0.9670] 0.67 5.86
π11 0.9617 0.0007 0.0190 [0.9158, 0.9892] 1.46 13.93
ω -0.0113 0.0020 0.2183 [-0.4472, 0.4223] 0.28 1.11
ψ 0.8640 0.0017 0.0394 [0.7791, 0.9334] -0.51 25.13
σ2η 0.3640 0.0057 0.0930 [0.2111, 0.5832] 0.0082 54.69

SE is the standard error of mean and SD is the standard deviation. CD is
the convergence diagnostic statistics proposed by Geweke (1992). IF is the
inefficiency factor proposed by Chib (2001).

Table 5: Estimation result for Model 4 (t-error and stochastic volatility)

Mean SE SD 95% Interval CD IF

µ(0) -0.4353 0.0082 0.1512 [-0.7875, -0.1837] 0.60 32.71

µ(1) 0.4026 0.0027 0.0614 [0.2883, 0.5314] -0.01 23.26
ϕ -0.1396 0.0014 0.0571 [-0.2486, -0.0256] -1.52 5.84
π00 0.9177 0.0005 0.0305 [0.8466, 0.9654] 0.99 4.99
π11 0.9597 0.0007 0.0187 [0.9147, 0.9872] -0.20 16.45
ω -0.1821 0.0069 0.2254 [-0.6232, 0.2723] -1.06 6.42
ψ 0.8540 0.0027 0.0443 [0.7522, 0.9274] -0.76 33.22
σ2η 0.3737 0.0082 0.0996 [0.2220, 0.6025] 0.74 55.69

ν 30.2283 2.7244 18.7448 [7.3251, 80.6351] 0.39 116.53

SE is the standard error of mean and SD is the standard deviation. CD is
the convergence diagnostic statistics proposed by Geweke (1992). IF is the
inefficiency factor proposed by Chib (2001).
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Table 6: Log marginal likelihood

Model 1 Model 2 Model 3 Model 4

-798.85 -781.33 -681.47 -702.37

Marginal likelihoods for Models 1 and 2 arecalcu-
lated using the modified harmonic mean method
proposed by Geweke (1999) and those for Mod-
els 3 and 4 are calculated following Chib (1995).
We do not report standard errors of log marginal
likelihood because they are close to zero.

Table 7: Business cycle turning points: Models 2–4

ESRI Model 2 Model 3 Model 4

Peak

85/06 85/10 85/11 85/08
91/02 90/11 90/11 90/11
97/05 97/07 97/07 97/07
00/10 01/01 01/01 01/01
08/02 07/09 07/09 07/07
12/03 12/04 12/04 12/04
– – – 15/08

18/10 18/06 18/06 18/05

Trough

86/11 86/11 86/09 86/09
93/10 94/01 94/01 94/01
99/01 98/11 98/11 98/12
02/01 02/01 02/01 02/01
09/03 09/04 09/03 09/03
12/11 12/11 12/11 12/12
– – – 16/03

20/05 20/06 20/05 20/05
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Table 8: Number of break points and log marginal likelihood

0 1 2 3 4

-681.47 -677.41 -676.59 -699.73 -706.933

Marginal likelihoods are calculated following Chib
(1995). We do not report standard errors of log marginal
likelihood because they are close to zero.

Table 9: Estimation result for Model 5 (normal error error + stochastic
volatility + 2 change points)

Mean SE SD 95% Interval CD IF

µ(00) -0.5372 0.0091 0.1516 [-0.8781, -0.2819] -1.83 32.11

µ(01) -5.5976 0.0338 1.2258 [-7.3781, -2.4430] 0.64 2.94

µ(02) -0.2869 0.0359 0.9460 [-2.7238, 0.1630] -0.66 3.46

µ(10) 0.4098 0.0021 0.0574 [0.2976, 0.5236] 0.62 9.04

µ(11) 1.8311 0.0146 0.4554 [1.2562, 2.3585] 0.86 7.90

µ(12) 0.4528 0.0181 0.2381 [0.1287, 0.8646] -0.60 61.55
ϕ -0.2050 0.0013 0.0575 [-0.3168, -0.0912] -0.024 5.79
p00 0.9366 0.0009 0.0284 [0.8697, 0.9788] -1.73 13.77
p11 0.9622 0.0005 0.0168 [0.9232, 0.9882] -1.34 2.75
q00 0.9962 0.0000 0.0036 [0.9864, 0.9999] -0.48 1.40
q11 0.9575 0.0006 0.0395 [0.8528, 0.9985] 1.17 1.15
ω -0.3102 0.0030 0.1793 [-0.6625, 0.0449] -0.89 3.42
ψ 0.8007 0.0035 0.0575 [0.6722, 0.8966] -0.89 46.15
σ2η 0.4173 0.0088 0.1211 [0.2270, 0.6983] 0.98 57.44

SE is the standard error of mean and SD is the standard deviation. CD is
the convergence diagnostic statistics proposed by Geweke (1992). IF is the
inefficiency factor proposed by Chib (2001).
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Table 10: Business cycle turning points: Model 5 (normal error error +
stochastic volatility + 2 change points)

ESRI Model 5

Peak

85/06 85/11
91/02 90/11
97/05 97/07
00/10 01/01
08/02 07/11
12/03 12/04
– 15/02

18/10 18/02

Trough

86/11 86/09
93/10 94/01
99/01 98/11
02/01 02/01
09/03 09/03
12/11 12/10
– 16/06

20/05 20/06
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Figure 1: CI

1985 1990 1995 2000 2005 2010 2015 2020 2025

85

90

95

100

105

110

115

120

125

The coincident indicator of composite index published by Economic and Social Research
Institute (ESRI), Cabinet Office, the Government of Japan. Shadow areas are the recession
periods published by ESRI.

Figure 2: Growth rate of CI (%)
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Figure 3: Posterior probabilities of recession: Model 1 (normal error and
constant volatility)
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Figure 4: Posterior probabilities of recession: Model 2 (t-error and constant
volatility)
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Figure 5: Posterior probabilities of recession: Model 3 (normal error and
stochastic volatility)
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Figure 6: Posterior probabilities of recession: Model 4 (t-error and stochastic
volatility)
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Figure 7: Posterior mean of volatility: Models 3 (normal error and stochastic
volatility) and Model 4 (t-error and stochastic volatility)
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The solid line is the posterior mean of volatility σ2
t from Model 3, and the dotted line is

that from Model 4.
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Figure 8: Posterior probabilities of change point: Model 5 (t-
error+stochastic volatility+2 change points)
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The solid line is the first change point and the dotted line is the second change point.
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Figure 9: Posterior probabilities of recession: Model 5 (t-error + stochastic
volatility+2 change points)
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