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Abstract

This paper deals with identification and inference of the Markov-switching model when
the unknown error distribution is approximated by the mixture of normals. We first deal
with the problem of label switching, with a focus on the dependence among the regime-
specific parameters that results from the ordering constraint necessary for identification. We
then deal with the problem of disentangling the latent Markov-switching variable(s) from
the latent mixture indicator variable. We show that, once these identification issues are
appropriately taken care of, the standard Markov Chin Monte Carlo (MCMC) procedure
can be employed for inference of the model.

When applied to the log difference of postwar U.S. industrial production index [1947:M1-
2019M9], the proposed identification schemes and the MCMC algorithm can effectively con-
trol for the irregular components or outliers in the error term. This results in sharp and
accurate inferences on the recession probabilities just like the dynamic factor models of the
coincident variables do. Furthermore, while the performance of the model with a normality
assumption is very sensitive to the priors employed for the parameters, the performance of
the proposed model is robust to them.
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1. Introduction

Since the seminal work of Hamilton (1989), the basic Markov-switching model has been

extended in various ways. For example, Diebold et al. (1994) and Filardo (1994) extend the

model to allow the transition probabilities governing the Markov process to be functions of

exogenous or predetermined variables. Kim (1994) extends it to the case of the state-space

model, which encompasses general dynamic models that include autoregressive moving av-

erage processes, unobserved components models, dynamic factor models, etc. Chib (1998)

introduces a structural break model with unknown multiple change-points by constraining

the transition probabilities of the Markov-switching model so that the latent state variable

can either stay at the current value or jump to the next higher value. 2 More recently,

Kauftmann (2015) propose a general K−state model with time-varying transition probabil-

ities by employing the multinomial Logit specification. Fox et al. (2011), Song (2014), and

Bauwens et al. (2017) introduce infinite hidden Markov models and generalize the finite-

state Markov switching model of Hamilton (1989) to the case of an infinite number of states.

These models integrate the regime switching and structural break dynamics in a unified

Bayesian framework.

Without an exception, however, estimation of the aforementioned models and the other

Markov-switching models in the literature has relied upon parametric assumptions on the

distribution of the error term. Most applications in the literature assume normally dis-

tributed errors, with rare exceptions like Dueker (1997) and Bulla (2011) who propose

Markov-switching models of stock returns in which the innovations are assumed to be drawn

from a Student-t distribution; and De Angelis and Viroli (2017) who assume the normal-

inverse Gaussian distribution as conditional form of financial returns and model innovations.

In this paper, we deal with the identification and inference of the Markov-switching

model when the unknown error distribution is approximated by the mixture of normals.

Two important identification issues delivered in this paper include: i) an issue related to

the label switching problem and ii) an issue related to disentangling the latent Markov-

switching variable(s) from the latent mixture indicator variable. We show that, once these

2 For surveys of earlier literature on Markov switching models, refer to Frühwirth-Schnatter
(2006) and Hamilton (2016).
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identification issues are appropriately taken care of, the standard Markov Chin Monte Carlo

(MCMC) procedure can be employed for inference of the model.

A conventional approach employed to deal with the label switching problem is to impose

an ordering constraint on the regime-specific parameters and to employ a rejection method

to generate them jointly. But Stephens (2000) and Frühwirth-Schnatter (2001) provide il-

lustrative examples in which this conventional approach may not solve the label switching

problem. As an alternative, Frühwirth-Schnatter (2001) proposes to employ the permutation

sampler in order to reorder the labeling when the ordering constraint is violated at a partic-

ular MCMC run. She has shown that her permutation sampler considerably improves upon

the conventional approach based on the rejection method. However, note that the ordering

constraint on the regime-specific parameters results in dependence among them and such

dependence increases as the distances among the regime-specific parameters decrease. For

the permutation sampling, it is not possible to fully address such dependence when speci-

fying the priors. Furthermore, one has to set all the marginal priors for the regime-specific

parameters to be identical. These limitations may have non-negligible effects on the per-

formance of the permutation sampler when the sample size is small. We show that we can

fully specify such dependence by specifying independent marginal priors for appropriately

transformed regime-specific parameters. The resulting sampling procedure that we present

improves upon the permutation sampling and it can be very easily implemented even when

the model involves more than one latent Markov-switching variable.

In order to deal with the second problem of disentangling the latent Markov-switching

variable(s) against the latent mixture indicator variable, we mathematically derive the iden-

tification conditions. These identification conditions can be easily incorporated into the

MCMC procedure through the priors of the transition probabilities for the latent Markov-

switching variable(s). We also show that, once the two identification issues are appropriately

taken care of, the standard MCMC procedure can be employed for inference of the model.

The rest of this paper is organized as follows. In Section 2, we motivate our paper

by performing a Monte Carlo experiment, which is designed to investigate the effect of

maximizing a normal log-likelihood when the normality assumption is violated. In Section

3, we deliver the two identification issues. In Section 4, we present how the identification
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schemes developed in Section 3 can be implemented to a more general model. We present

an MCMC algorithm for the inference of the general model in Section 5. In Section 6, we

apply the proposed identification schemes and the MCMC algorithm to the log difference of

monthly postwar U.S. industrial production index [1947:M1- 2019M9]. Section 7 concludes

the paper.

2. Pitfalls in Ignoring Non-normality in Markov-switching Models and Maxi-
mizing a Normal Log Likelihood

In this section, we investigate the small-sample performance of the maximum likelihood

estimation of Markov-switching models when a normal log-likelihood is maximized but the

normality assumption is violated. For this purpose, we consider the following model with

Markov-switching mean:

yt = βSt + σε∗t , ε∗t ∼ i.i.d(0, 1), St = 1, 2,

t = 1, 2, ..., T,
(1)

where St is a 2-state Markov-switching process with transition probabilities

Pr[St = 1|St−1 = 1] = pS,11, P r[St = 2|St−1 = 2] = pS,22. (2)

We consider the following four alternative distributions for the error term εt, the first

two of which are symmetric and the other two are asymmetric:

Case #1

ε∗t ∼ i.i.d. N(0, 1)

Case #2

ε∗t =
ut√

ν/(ν − 2)
, ut ∼ i.i.d. t− distribution with d.f. = ν

Case #3

ε∗t =
ln(u2

t )− E(ln(u2
t ))√

(var(ln(u2
t ))

, ut ∼ i.i.d. N(0, 1),
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where E(ln v2
t ) = −1.2704, var(ln v2

t ) = π2/2.

Case #4

ε∗t |Dt ∼ i.i.d. N(µ∗
Dt
, h∗2Dt

), Dt = 1, 2, 3,

P r[Dt = 1] = pD,1, P r[Dt = 2] = pD,2, P r[Dt = 3] = PD,3

For each of the above four cases, we generate 10,000 sets of data. For each data set

generated, we estimate the model in equations (1) and (2) by maximizing a normal log-

likelihood. While the normality assumption is satisfied for Case #1, it is violated for the

other three cases. We consider three alternative sample sizes: T = 500, T = 5, 000 and

T = 50, 000. The parameter values we assign are given below:

β1 = −0.6, β2 = 0.7; σ2 = 1.1; pS,11 = 0.9, pS,22 = 0.95;

ν = 5;

µ∗
1 = 1.05, µ∗

2 = 0.1, µ∗
3 = −1.35; h∗2

1 = 0.2, h∗2
2 = 0.05, h∗2

3 = 1.695;

pD,1 = 0.2, pD,2 = 0.6, pD,3 = 0.2

Table 1 reports the mean of the estimates for each parameter in each case, as well as the

root mean squared error (RMSE) for the estimates. For case #1 in which we have normally

distributed error term, the mean parameter estimates are very close to their true values for

all sample sizes, with the RMSE’s getting smaller as the sample size increases. For case

#2 in which error term follows a t-distribution, a deviation from normality does not seem

to affect the estimation results a lot. When the sample size is 500, the biases are larger

than those for Case #1. But they quickly disappear with smaller RMSE’s as the sample

size increases, even though the RMSE’s remain larger than those for Case #1 for all sample

sizes. For cases #3 and #4 in which the error distributions are asymmetric, however, we

have considerably larger biases and RMSE’s than for Cases #1 or 2. Here, the biases and

RMSE’s decrease as the sample size is increased. However, they remain sizable even when

the sample size is as large as 50,000, especially for Case #4.

In order to investigate how the inferences on the regime probabilities are affected by

the violation of the normality assumption when the log normal likelihood is maximized, we
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conduct another simulation study. When generating data, we consider the same data gen-

erating processes as given above, except that we generate St, t = 1, 2, ..., T , only once and

fix them in repeated sampling. The sample size we consider is T = 500. For each data

set generated in this way, we estimate the model in equations (1) and (2) by maximizing

a normal log-likelihood and then calculate the smoothed probabilities conditional on esti-

mated parameters. Figure 1 plots the average smoothed probabilities of low-mean regime

(St = 1) for each case. The shaded areas represent the true low-mean regime. Case #1

with the normal error term provides us with the sharpest regime inferences. However, as

the distribution of the error term deviates from normality, the inferences about the regime

probabilities deteriorate a lot especially for Case #4 in which the degree of asymmetry in

the error distribution is the largest.

The simulation study in this section clearly demonstrates the pitfalls of estimating

Markov-switching models by maximizing a normal log-likelihood when the normality as-

sumption is violated. For all the cases we consider, the maximum likelihood estimation

seems to result in consistent parameter estimates, in the sense that both the biases and

RMSE’s decrease as the sample size increases. When the normality assumption is violated,

however, the maximization of a normal log likelihood results in poor small sample properties

of the estimators and poor inferences on the regime probabilities. In particular, in a situation

like Case #4 in which the degree of asymmetry in the error distribution is very high, even

a sample with as many as 50,000 observations may not be considered as a large sample, in

the sense that a considerable degree of biases still remains in the parameter estimates along

with large RMSE’s.

3. Basic Model and Identification Issues

3.1. Identification Issue #1: The Label Switching problem

3.1.1. The Label Switching Problem and Its Solution
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Consider the following model with an unknown error distribution: 3

yt = βSt + σε∗t , ε∗t ∼ i.i.d.(0, 1), St = 1, 2, ..., K; t = 1, 2, ...., T, (3)

where St is a first order Markov-switching process with the following transition probabilities:

Pr[St = j|St−1 = i] = pS,ij,
K∑

j=1

pS,ij = 1, i, j = 1, 2, ..., K, (4)

The distribution of the error term ε∗t is unknown and potentially non-normal. We can

approximate the distribution of ε∗t by the following mixture of normals: 4

ε∗t |Dt ∼ i.i.d. N(µ∗
Dt
, h∗2Dt

), Dt = 1, 2, ...,M, (5)

where M is given and finite in the case of finite mixture of normals and M is potentially

infinite in the case of Dirichlet process of mixture of normals. The mixture indicator variable

Dt is serially independent. Furthermore, as the unconditional expectation and variance of

ε∗t are 0 and 1, respectively, we have the following restrictions on the conditional means and

variances of ε∗t :

M∑
m=1

µ∗
mPr[Dt = m] = 0; and

M∑
m=1

(h∗2
m + µ∗2

m )Pr[Dt = m] = 1. (6)

Here, a typical way of labeling the states for St and Dt is given below:

βSt =
K∑

k=1

βkSk,t,

µDt =
M∑

m=1

µ∗
mDm,t and h∗2

Dt
=

M∑
m=1

h∗2
mDm,t,

(7)

such that

Sk,t =

{
1, if St = k; k = 1, 2, . . . , K

0, otherwise,

Dm,t =

{
1, if Dt = m; m = 1, 2, . . . ,M

0, otherwise.

(8)

3 Equation (3) will be fully generalized in Section 4. For simplicity of the discussion on
identification issues involved, we focus on a simplified model in equation (3).

4 We allow for potential asymmetry in the distribution of ε∗t . Note that in case µ∗
m = 0

for all m, the distribution is ε∗t is symmetric.
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The above labeling is not unique and the unconstrained parameter spaces for β′s and

µ′s (or h2′s) contain K! and M ! subspaces, respectively, each corresponding to different

way to label states. As discussed in Stephens (2000) and Frühwirth-Schnatter (2001), when

sampling from the unconstrained posterior via MCMC methods, it is impossible to know

which component of the sampled parameter corresponds to which state due to potential label

switching. Thus, as noted by Stephens (2000), summarizing joint posterior distributions by

marginal distribution may lead to nonsensical answers due to the lack of identification.

The label switching problem is not an issue at all for the serially independent mixture

indicator Dt, as we are not interested in the marginal distribution of µ′s or h2′s or in the

inferences on Dt. Furthermore, the complete data likelihood f(y1, . . . , yT |D1, . . . , DT ; .) and

the prior for Dt is invariant to the relabeling of the states in Dt.

However, it is critical that we take care of the label switching problem for St during the

MCMC procedure, given that we want to obtain meaningful inferences on St and on the

regime-specific parameters from their marginal posterior distributions. This can be done by

imposing the following identifiability constraints:

β1 < β2 < . . . < βK , (9)

which can be implemented in the MCMC sampler by using some truncation or rejection

method after drawing {β1 β2 ... βK} jointly. For example, if the ordering constraint is

not satisfied for the generated β′s, they are drawn again until the constraint is satisfied.

But Stephens (2000) and Frühwirth-Schnatter (2001) provide illustrative examples in which

this conventional approach may not solve the label switching problem. As an alternative,

Frühwirth-Schnatter (2001) proposes to employ the permutation sampler. For example,

whenever the ordering constraint is violated at a particular MCMC run, a suitable permu-

tation is applied.

Note that the ordering constraint in equation (9) results in non-zero correlations among

βk, k = 1, 2, ..., K. Furthermore, these correlations are dependent upon the distances among

the regime-specific parameters. For example, the smaller the distances among the β pa-

rameters, the higher will be the correlations among them. Imposing the ordering constraint

by applying the rejection method to the β parameters that are drawn jointly suffers from
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two problems. First, it is not easy to design joint priors that fully reflect such correlations

among the β parameters. Second, every time the β parameters are redrawn when the order-

ing constraint fails, we lose sample information about these correlations. Thus, only when

the distances among the β parameters are large enough relative to the variance of the error

term, will the approach based on the rejection method work. This is because the low corre-

lations among the β parameters would leave us with little non-sample or sample information

to lose.

The permutation sampler proposed by Frühwirth-Schnatter (2001) successfully handles

the second problem mentioned above. As a suitable permutation is employed without redraw-

ing the β parameter, the MCMC output loses no sample information about the correlations

among the regime-specific parameters. This is why the permutation sampler considerably

improves upon the rejection method as illustrated by Frühwirth-Schnatter (2001). However,

the permutation sampler may not be free from the first problem mentioned earlier, due to its

difficulty in designing the joint priors for the regime-specific parameters that fully account

for the correlation structure that depends upon the distances among them. Additional draw-

back of the permutation sampler would be that we have to set all the marginal priors for βk,

k = 1, 2, ..., K, to be identical.

In what follows, we provide an alternative procedure for dealing with the label switching

problem, in which the correlations among the β parameters are fully specified. For this

purpose, we employ the following transformation for βSt in equations (7): 5

βSt = β1 +
St∑

k=2

ak, St = 2, 3, ..., K, ak > 0 for all k. (10)

(or βk = βk−1 + ak, ak > 0, k = 2, ..., K)

An advantage of the above specification is that we can specify the prior dependence

among βk, k = 1, 2, ..., K, by employing independent marginal priors for β1 and ak, k =

2, 3, ..., K. We can then draw each of these parameters from an appropriate truncated

5 Alternatively, as implemented in Albert and Chib’s (2001) sequential ordinal models,
one can impose the inequality constraints in equation (9) by

βk = βk−1 + exp(γk), k = 2, 3, ..., K,

and assign multivariate normal prior distribution for the γ parameters.
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marginal posterior distribution. For example, we draw ak for k = 2, 3, ..., K, conditional on

β1, ã6=k = {a2, ..., ak−1; ak+1, ...aK}, all the other variates, and data. We can then recover β2,

..., βK parameters from equation (10). Here, an important issue to consider is that the like-

lihood function for ak depends only on the observations for which St = j, j = k, k+1, ..., K,

while the likelihood function for β1 depends on all the observations in the sample.

3.1.2. Simulation Study: Performance of Alternative Sampling Procedures

In order to compare the performances of the above-mentioned three sampling procedures

designed to deal with the label switching problem, we perform a simulation study in what

follows. We generate a representative sample that consists of 100 observations according to

the following data generating process:

yt = β1S1,t + β2S2,t + σεt,

= β1 + a2S2,t + σεt, εt ∼ i.i.d.N(0, 1), t = 1, 2, ..., T,

β1 < β2 or a2 > 0

β1 = −1, β1 = 1.5; σ2 = 2; pS,ii = 0.6, i = 1, 2

The priors we employ for each sampling procedure are summarized below:

Priors for Rejection Sampling

β1 ∼ N(−0.5, 2); β2 ∼ N(1, 2); σ2 ∼ IG(4, 6); pjj ∼ Beta(6, 4), j = 1, 2,

Priors for Permutation Sampling

β1 ∼ N(0, 2); β2 ∼ N(0, 2); σ2 ∼ IG(4, 6); pjj ∼ Beta(6, 4), j = 1, 2,

Priors for Proposed Sampler

β1 ∼ N(−0.5, 2); a2 ∼ N(1.5, 2); σ2 ∼ IG(4, 6); pjj ∼ Beta(6, 4), j = 1, 2

Note that, in the case of the permutation sampling, the choice of the priors is limited. That

is, the priors for β1 and β2 should be identical. We thus set the posterior mean of β1 and β2

to be the average of their true values.
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For each of the three cases, we obtain 55,000 MCMC draws and discard the first 5,000

draws. Figure 2 depicts the posterior marginal distributions of β1 and β2 for each case.

The first graph shows that the rejection sampler fails to solve the label switching problem.

We have bimodal posterior distributions for the parameters. The second graph show that

the permutation sampler improves upon the rejection sampler. However, the problem still

remains. The last graph shows that the proposed sampler considerably improves upon the

permutation sampler. For the proposed sampler, the marginal posterior distributions are

unimodal and centered around the true values.

A note is in order. When the distance between β1 and β2 is very large relative to the

value of σ2 in the data generating process, all the three sampling procedures can satisfactorily

handle the label switching. This is because the dependence between the β1 and β2 parameters

that results from the inequality constraint can be negligible in this case. However, in the

other extreme case in which the distance between the β1 and β2 is too small relative to the

value of σ2, none of them may work.

3.2. Identification Issue #2: Disentangling the Markov-Switching Variable (St)
Against the Mixture Indicator Variable (Dt)

There is an additional identification issue that needs to be delivered other than the

problem of label switching. In this section, we consider the identification of the latent

Markov-switching variable St in equation (3) against the latent and serially independent

mixture indicator variable Dt in equation (5). For this purpose, we substitute equation (10)

into equation (3) and rearrange the terms to obtain

yt = β1 + a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + . . .+ aK−1

K∑
k=K−1

Sk,t + aKSK,t + σε∗t ,

ε∗t ∼ i.i.d.(0, 1),

(11)

which can be rewritten as:

Model with Transformed Parameters
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yt = a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + . . .+ aK−1

K∑
k=K−1

Sk,t + aKSK,t + εt,

εt ∼ i.i.d.(β1, σ
2),

(12)

where εt = β1 + σε∗t .

We can then approximate the unknown distribution of et by the following mixture of

normals:

εt|Dt ∼ i.i.d. N(µDt , h
2
Dt

), Dt = 1, 2, ...,M. (13)

An additional advantage of employing equations (12) and (13) in place of equations (3) and

(5) is that, the parameters in equation (13) are restriction-free unlike the parameters in

equation (5). Once Dt, µDt and h2
Dt

, t = 1, 2, ..., T , are drawn, we can recover β1 and σ2 by:

β1 =
M∑

m=1

µmPr[Dt = m]; and σ2 =
M∑

m=1

(h2
m + (µm − µ̄)2)Pr[Dt = m], (14)

where Pr(Dt = m) is the mixture probability and µ̄ = β1.

We consider the following representation of equation (12):

yt = β̄∗′S̄t + εt, εt|Dt ∼ i.i.d.N(µDt , h
2
Dt

), Dt = 1, 2, ...,M, (15)

where β̄∗ = [ β∗
2 β∗

3 . . . β∗
K ]′, with β∗

k =
∑k

j=2 aj; and S̄t = [S2,t . . . SK,t ]′, with Sk,t,

k = 2, 3, ..., K, being defined in equation (8). It is easy to show that the dynamics of St with

the transition probabilities in equation (4) can be represented by the following VAR process

for S̄t:
6

S̄t = Q0 +Q1S̄t−1 + ν̄t, (16)

where the elements of the (K − 1)× 1 vector Q0 and the (K − 1)× (K − 1) matrix Q1 are

functions of the transition probabilities.

By defining C as a collection of the eigenvectors for Q1, we can rewrite equation (16) as:

S̄∗
t = Λ0 + Λ1S̄

∗
t−1 + ν̄∗t , (17)

6 For a derivation, readers are referred to Appendix A. For a two-state Markov-switching
process for St (i.e., K = 2), for example, S̄t = S2t, Q0 = 1− pS,11, and Q1 = pS,11 + pS,22− 1.
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where S̄∗
t = C−1S̄t; Λ0 = C−1Q0; ν̄∗t = C−1ν̄; Λ1 = C−1Q1C is a diagonal matrix that

consists of eigenvalues ofQ1; and the rows of ν∗t are independent of one another. Furthermore,

by multiplying both sides of equation (15) by C−1(β̄∗β̄∗′)−1β̄∗, we get: 7

ȳ∗t = S̄∗
t + ε̄∗t , ε̄∗t |Dt ∼ i.i.d.N(BDt ,ΩDt), Dt = 1, 2, ...,M, (18)

where ȳ∗t = C−1(β̄∗β̄∗′)−1β̄∗yt; ε̄
∗
t = C−1(β̄∗β̄∗′)−1β̄∗εt; ΩDt is diagonal; and the rows of ε̄∗t

are independent of one another.

Then, particular rows from equations (17) and (18) can be represented by the following

univariate unobserved components model:

ȳ∗i,t = S̄∗
i,t + ε̄∗i,t, ε̄∗i,t | Dt ∼ i.i.d.N(bi,Dt , ω

2
i,Dt

), Dt = 1, 2, . . . ,M,

S̄∗
i,t = Λi,0 + λiS̄

∗
i,t−1 + ν̄∗i,t,

i = 1, 2, ..., K − 1,

(19)

where λi, k = 1, 2, ..., K−1, are the eigenvalues of Q1; bi,Dt is the i−th row of BDt and ω2
i,Dt

is

the i−th diagonal element of ΩDt . As the reduced-form model for the unobserved components

model in equation (19) is an ARMA(1,1) model, it is easy to show that identification of the

model in equation (19) can be achieved if the following assumption hold:

Assumption 1: ε̄∗i,t is independent of ν̄∗i,t for i = 1, 2, ..., K − 1.

Assumption 2: λi 6= 0 for i = 1, 2, ..., K − 1.

Note that Assumption 1 implies that St and Dt are independent of each other. Assump-

tion 2 requires all the eigenvalues or the real parts of the eigenvalues for the Q1 matrix in

equation (16) to be non-zero. For economic data, however, a negative correlation between

current and past regimes does not seem to make a lot of sense. We thus assume that λi > 0

for i = 1, 2, ..., K − 1. It is easy to show that a sufficient condition for this to hold is the

following:

pS,kk > 0.5, k = 1, 2, ..., K, (20)

which can be imposed through priors.

7 Given the implied ordering constraint on the β∗ parameters (i.e., β∗
2 < β∗

3 < . . . < β∗
K),

the inverse of β̄∗β̄∗′ exists.
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In case only Assumption 2 holds, the number of parameters for the unobserved com-

ponent model in equation (19) is larger than that for its reduced-form ARMA(1,1) model,

leading to under-identification. In case only Assumption 1 holds, it is also easy to show

that the model specified in equations (12) and (13) is not identified. If λ1 = 0 and λi 6= 0,

i = 2, 3, ..., K − 1, for example, we can alternatively derive a model with a (K − 1)−state

Markov-switching process for St and a mixture of M + 1 normals for εt. This alternative

model has exactly the same likelihood value as that for model in equations (12) and (13)

with a K−state Markov-switching process for St and a mixture of M normals for εt.

4. General Model Specification and Approximating the Unknown Error Distri-
bution

4.1. A General Model

Consider the following generalized model: 8

yt = βSt + ut, St = 1, 2, ..., K,

φ(L)ut = σWtε
∗
t , ε∗t ∼ i.i.d.(0, 1), Wt = 1, 2, ..., N,

β1 < β2 < . . . < βK ; σ2
1 < σ2

2 < . . . < σ2
N ,

(21)

where φ(L) = 1 − φ1L − φ2L
2 − . . . − φpL

p is a polynomial equation in the lag operator;

all roots of φ(L) = 0 lie outside the complex unit circle; the transitional dynamics of St is

specified in equation (4). We assume that Wt is independent of St and follows an N−state,

first-order Markov-switching process with the following transition probabilities:

Pr[Wt = j|Wt−1 = i] = pW,ij,
N∑

j=1

pW,ij = 1, i, j = 1, 2, ..., N. (22)

In order to avoid the non-identification resulting from the problem of label switching, we

follow Section 3.1 in employing the following specifications for the βSt and σ2
Wt

parameters:

8 The first equation in (21) can be further generalized to the following regression equation
with a vector of covariates xt:

yt = βSt + Γ′
St
xt + ut, (21′)

where xt is a vector of exogenous variables. For simplicity of expositions, we focus on the
model in equation (21).
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βSt = β1 +
St∑

k=2

ak, ak > 0 for all k, St = 2, 3, ..., K,

(or βk = βk−1 + ak, ak > 0, k = 2, ..., K, )

σ2
Wt

= σ2
1

Wt∏
n=1

(1 + bn), 1 + bn > 1 for all n, Wt = 2, 3, ..., N,(
or σ2

n = σ2
n−1(1 + bn), 1 + bn > 1 n = 2, ..., N,

)
(23)

which allow us to employ independent priors for {β1, ak, k = 2, 3, ..., K} and for {σ2
1, (1 +

bn), n = 2, 3, ..., N}. This way, we can also fully account for dependence among βk, k =

1, 2, ..., K and that among σ2
n, n = 1, 2, ..., N , which result from the ordering constraints

(β1 < β2 < . . . < βK and σ2
1 < σ2

2 < . . . < σ2
N).

By substituting equation (23) into equation (21) and rearranging terms, we obtain:

yt = β1 + a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + . . .+ aK−1

K∑
k=K−1

Sk,t + aKSK,t + ut,

φ(L)ut = gWtu
∗
t , u∗t ∼ i.i.d.(0, σ2

1),

(24)

where

g2
Wt

=
σ2

Wt

σ2
1

=
Wt∏
n=1

(1 + bn), g2
1 = 1, Wt = 2, 3, ..., N. (25)

(
or g2

n = g2
n−1(1 + bn), g2

1 = 1, n = 2, 3, ..., N
)

Then, by defining et = β1 + ut and εt = φ(1)β1/gWt + u∗t , equation (24) can be rewritten as:

9

Model with Transformed Parameters

9 For a Markov-switching model with covariates, the first equation in (26) can be extended
to:

yt = a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + . . .+ aK−1

K∑
k=K−1

Sk,t + aKSK,t +
K∑

k=1

Sk,tΓ
′
kxt + et.
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yt = a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + . . .+ aK−1

K∑
k=K−1

Sk,t + aKSK,t + et,

φ(L)et = gWtεt, εt|Wt ∼ i.i.d.(
1

gWt

φ(1)β1, σ
2
1),

(26)

where the unknown distribution of εt|Wt can be approximated by the following mixture of

normals: 10

εt|Wt, Dt ∼ i.i.d. N(
1

gWt

µDt , h
2
Dt

), Dt = 1, 2, ...,M. (27)

To complete the model other than the specification of the unknown error distribution,

we employ the following priors for the parameters except those associated with the mixture

of normals in equation (27):

Priors

φ̃ = [φ1 φ2 . . . φp ]′ ∼ N(Aφ̃,Σφ̃)1[Sφ̃],

ak ∼ N(Aa,k, σ
2
a,k)1[ak>0], k = 1, 2, ..., K,

(1 + bn) ∼ IG(
νn,0

2
,
δn,0

2
)1[(1+bn)>1], n = 2, 3, ..., N,

[ pS,k1 pS,k2 . . . pS,kK ]′ ∼ Dir(αS,i1, αS,i2, . . . , αS,iK)1[pS,kk>0.5], k = 1, 2, ..., K,

[ pW,m1 pW,m2 . . . pW,mM ]′ ∼ Dir(αW,m1, αW,m2, . . . , αW,mM)1[pW,mm>0.5],

m = 1, 2, ...,M,

(28)

where 1[.] is the indicator function; Sφ̃ refers to the stationary region of φ̃; IG(.) refers to the

inverted Gamma distribution; and Dir(.) refers to the Dirichlet distribution. Note that we

impose the restrictions pS,kk > 0.5, k = 1, 2, ..., K, and pW,nn > 0.5, n = 1, 2, ..., N , in order

to identify the Markov-switching processes St and Wt against the mixture indicator variable

Dt. Priors associated with the mixture of normals for εt in equation (27) are discussed in

the next section.

10 Note that σ2
1 and β1 can be easily recovered from

β1 =
1

φ(1)

M∑
m=1

µmpD,m; σ2
1 =

˜(
1

g2

)
M∑

m=1

(µm − µ̄)2pD,m + h̄2,

where
˜( 1
g2

)
= 1

T

∑T
t=1

1
g2

Wt

, µ̄ =
M∑

m=1

µmpD,m, and h̄2 =
M∑

m=1

σ2
mpD,m.
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4.2. Bayesian Modeling of the Mixture of Normals for the Error Term: Review

In the literature, there are two alternative ways of modeling the mixture of normals for

εt in equation (27) as surveyed in Marin et al. (2005). One is the finite mixture normals

model in which the total number of mixtures is fixed and given, and the other is the Dirichlet

process mixture normals model in which the total number of mixtures is potentially infinite

and treated as a random variable. Kim et al. (1998) and Omori et al. (2007) demonstrate the

usefulness of the finite mixture of normals in approximating the log chi-square distribution in

stochastic volatility models; and Alexander and Lazar (2006) employ it to approximate the

unknown error distribution in a GARCH model. More recently, Jensen and Maheu (2013)

apply the Dirichlet process mixture of normals to a multivariate GARCH model; Jensen

and Maheu (2010, 2014) apply it to deal with unknown error distributions in stochastic

volatility models; and Jin and Maheu (2016) apply it for Bayesian semi-parametric modeling

of realized covariance matrices.

We employ the Dirichlet process mixture of normals in this paper. In what follows, we

first provide a brief review of the finite mixture of normals and the Dirichlet process mixture

of normals with a focus on their differences. When the total number of mixtures, M , is fixed

and pre-specified, we have the following specification for finite mixture of normals:

Finite Mixture of Normals

εt|Wt, Dt ∼ i.i.d. N(
1

gWt

µDt , h
2
Dt

), Dt = 1, 2, ...,M,

(pD,1, pD,2, . . . , pD,M) ∼ Dirichlet(
α

M
, . . . ,

α

M
),

(µm, h
2
m) ∼ G0, m = 1, 2, ...,M,

G0 ≡ N(λ0, ψ0h
2
m)IG(

νh

2
,
δh
2

),

(29)

where pD,m is the mixture probability. G0 or the joint prior distribution of (µm, σ
2
m) is

assumed to be Normal-Inverse-Gamma. The α parameter can be either fixed or random.

For the above finite mixture of normals, the prior probability of Dt conditional on D̃6=t

can be derived as: 11

11 Proof of equation (30) is given in Appendix B.
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Pr[Dt = m|D̃6=t, α] =
T6=t,m + α

M

T − 1 + α
, m = 1, 2, ...,M,

(with
M∑

m=1

Pr[Dt = m|D̃6=t, α] = 1)

(30)

where D̃6=t = [D1 . . . Dt−1 Dt+1 . . . DT ]′ is the collection of mixture indicators ex-

cluding Dt; and T6=t,m is the total number of observations that belong to class m in a sample

that excludes period t. An important thing to note is that the above probabilities always add

up to 1. With this background, we are now ready to discuss the Dirichlet process mixture

of normals and its properties.

As suggested by Neal (2000), Gorur and Rasmussen (2010), and others, the limit of the

model in equation (29) as M →∞ is equivalent to the Dirichlet process mixture of normals.

A formal specification for the Dirichlet process mixture of normals is given below:

Dirichlet Process Mixture of Normals

εt|Wt, Dt ∼ i.i.d. N(
1

gWt

µDt , h
2
Dt

), Dt = 1, 2, 3, ...,

(µm, h
2
m) ∼ G, m = 1, 2, 3, ...,

G | G0, α ∼ DP (α,G0),

G0 ≡ N(λ0, ψ0h
2
m)IG(

νh

2
,
δh
2

),

(31)

whereDP (., .) refers to the Dirichlet process; G0 and α are referred to as the base distribution

and the concentration parameter, respectively. Note that in the case of the finite mixture of

normals, the joint distribution of (µm, σ
2
m) is given by G0, and thus, G ≡ G0.

In the case of the Dirichlet process mixture of normals, the joint distribution of (µm, σ
2
m)

is a random distribution generated by a Dirichlet process with th base distribution G0 and

the concentration parameter α. 12 The prior probability of Dt conditional on D̃6=t can be

obtained by taking the limit M →∞ for equation (30), as given below:

12 That is, the Dirichlet process provides a random distribution over distributions on infinite
sample spaces. The hierarchical models in which the Dirichlet process is used as a prior over
the distribution of the parameters are referred to as the Dirichlet process mixture model.
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Pr[Dt = m|D̃6=t, α] =
T6=t,m

T − 1 + α
, m = 1, 2, ...,M∗

6=t,

(with
M∑

m=1

Pr[Dt = m|D̃6=t, α] < 1)

(32)

where Tm,6=t is defined earlier and M∗
6=t is the total number of distinctive classes (or mixtures)

realized in the sample that excludes period t.

Unlike the case of the finite mixture of normals in equation (30), the above probabilities

do not add up to 1, suggesting that there always exists a non-zero probability that an

observation at period t belongs to a new class that does not belong to the existing M∗
6=t

classes. This probability is given below:

Pr[Dt = M∗
6=t + 1|D̃6=t, α] = 1−

M∗
6=t∑

m=1

Pr[Dt = m|D̃6=t,M
∗
6=t]

=
α

T − 1 + α
,

(33)

which suggests that, if α is larger, the prior mean for the total number of mixture is higher

with less concentrated distribution for G in equation (31). The α parameter can be either

fixed or random. In case the α parameter is random, it is common to employ a beta prior.

5. Estimation of the Model and Simulation Study

In order to illustrate the MCMC procedure for estimation of the model that consists of

equations (26)-(28) and (31), we define the corresponding vectors of parameters and latent

variables in the following way:

Variates associated with Markov-switching Model in equation (26)

ã = [ a2 a3 . . . aK ]′ , g̃2 = [ g2
2 g2

3 . . . g2
N ]′ ,

S̃T = [S1 S2 . . . ST ]′ , W̃T = [W1 W2 . . . WT ]′ ,

p̃S = [ pS,11 pS,12 . . . ]′ , p̃W = [ pW,11 pW,12 . . . ]′ ,

where the transition probabilities of St and Wt are represented by vectors p̃S and p̃W , re-

spectively.
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Variates associated with Mixture of Normals in equation (31)

µ̃ = [µ1 . . . µM ]′ ; h̃2 = [h2
1 . . . h2

M ]′ ; D̃T = [D1 . . . DT ]′ ; α,

where α is the concentration parameter for the Dirichlet process. Then, the following two

steps can be iterated until the convergence is achieved:

Step 1: Draw ã, g̃2, S̃T , W̃T , p̃S, and p̃W conditional on µ̃, h̃2, and D̃T , and data

ỸT = [ y1 y2 . . . yT ]′. In this step, the concentration parameter α is irrelevant once

D̃T is given.

Step 2: Draw µ̃, h̃2, D̃T , and α conditional on ã, g̃2, S̃T , W̃T and data ỸT . This step

is equivalent to drawing µ̃, h̃2, D̃T , α conditional on εT = [ ε1 ε2 . . . εT ] and g̃2. In

this step, p̃S and p̃W are irrelevant once S̃T and W̃T are given.

Note that equation (27) implies

εt =
1

gWt

µDt + hDtvt, vt ∼ i.i.d.N(0, 1). (34)

By multiplying both sides of the first equation in (26) by φ(L) and by substituting equation

(34) in the resulting equation, we obtain

φ(L)yt = φ(L)(a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + . . .+ aK−1

K∑
k=K−1

Sk,t + aKSK,t) + µDt + gWthDtvt,

vt ∼ i.i.d.N(0, 1),
(35)

(or φ(L)yt = φ(L)z′tã+ µDt + gWthDtvt, vt ∼ i.i.d.N(0, 1), )

where zt = [
∑K

k=2 Sk,t
∑K

k=3 Sk,t . . .
∑K

k=K−1 Sk,t SK,t ]′ and ã = [ a2 a3 . . . aK ]′.

Based on equation (35), we explain procedures for drawing the variates in Steps 1 and 2

from their appropriate full conditional distributions in the next two sub-sections (Sections

5.1 and 5.2). Section 5.3 provides a simulation study.
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5.1. Drawing Variates Associated with Markov-switching Regression Equation
Conditional on the Mixture of Normals and Data

Drawing ã Conditional on φ̃, g̃2, S̃T , W̃T , µ̃, h̃2, D̃T and Data

Rearranging equation (35), we obtain

y1t = a2z
†
2t + a3z

†
3t + . . .+ aKz

†
Kt + vt, vt ∼ i.i.d.N(0, 1) (36)

where y1t =
φ(L)yt−µDt

gWthDt
and z

†
jt =

∑K

k=j
φ(L)Sk,t

gWthDt
, j = 2, 3, ..., K. Then, for given y1t and z

†
jt,

t = p + 1, 2, ..., T, j = 2, 3, ..., K, we can generate a2, a3, . . . , aK directly from the following

truncated normal distributions, without resorting to the rejection sampling: 13

1) Draw a2 from

a2 | a3, a4, . . . , aK ∼ N(ca,2, ω
2
a,2)1[a2>0]

2) Draw a3 from

a3 | a2, a4, . . . , aK ∼ N(ca,3, ω
2
a,3)1[a3>0]

.....

.....

K-1) Draw aK from

aK | a2, a3, . . . , aK−1 ∼ N(ca,K , ω
2
a,K)1[aK>0],

where ca,j and ω2
a,j refer to the posterior mean and the posterior variance of the truncated

full conditional distribution of aj, j = 2, 3, ..., K.

Here, as discussed in Section 3.1, the derivation of the conditional posterior distribution

for ak should be based on the observations for which St = j, j = k, k + 1, ..., K. This is

because ak is a common element only in βSt , St = k, k + 1, ..., K.

Drawing φ̃ Conditional on ã, g̃2, S̃T , W̃T , µ̃, h̃2, D̃T , and Data

Rearranging equation (35), we obtain

13 Note that we do not employ the rejection method to avoid the labeling problem, as
discussed in Section 3.1.
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y2t = z∗
′

t φ̃+ vt, vt ∼ i.i.d.N(0, 1), (37)

where y2t =
yt−z′tã−µDt

gWthDt
and z∗t = [

yt−1−z′t−1ã

gWt−1
hDt−1

yt−2−z′t−2ã

gWt−2
hDt−2

. . .
yt−p−z′t−pã

gWt−p
hDt−p

]′. Based on equa-

tion (37), we can draw φ̃ from an appropriate posterior distribution.

Drawing g̃2 Conditional on ã φ̃, S̃T , W̃T , µ̃, h̃2, D̃T , and Data

By defining ζt = gWtvt in equation (35), we can calculate ζt by

ζt =
φ(L)(yt − z′tã)− µDt

hDt

. (38)

Furthermore, we know that

ζt|Wt = n ∼ N(0, g2
n) ≡ gn−1N(0, (1 + bn)), (39)

as we have

g2
n = g2

n−1(1 + bn), g2
1 = 1, n = 2, 3, ..., N. (40)

Here, we want to draw (1 + bn) conditional on g2
n−1, (1 + bn+1), ..., (1 + bN) for n =

2, 3, ..., N , and then we calculate g2
n, n = 2, 3, ..., N , based on equation (40). What’s impor-

tant here is that the likelihood function for (1 + bn) depends on the values of ζt for which

Wt = n, n+1, ..., N , as (1+ bn) is a common element only in g2
Wt

, Wt = n, n+1, ..., N . Thus,

if we define

ζ∗n,t =
ζt

gn−1

√∏N
i=n+1(1 + biWi,t)

, (41)

we have

ζ∗n,t | gn−1, (1 + bn+1), ..., (1 + bN) ∼ N(0, (1 + bn)), (42)

for Tn = {t : Wt = n, n+ 1, . . . , N}.

Then, given the prior for (1+bn) in equation (28), we can draw (1+bn) from the following

truncated inverse Gamma distribution:

(1 + bn) | g2
n−1, (1 + bn+1), ..., (1 + bN), ũT ∼ IG(

νn,1

2
,
δn,1

2
)1[1+bn>1], (43)
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where
δn,1 = δn,0 +

∑
Tn

ζ∗n,t

νn,1 = νn,0 + cn,
(44)

with cn referring to the cardinality of Tn. When drawing (1 + bn) from equation (43), we

draw (1 + bn) directly from the truncated Inverse Gamma distribution.

Drawing S̃T , p̃S, W̃T , and p̃W Conditional on ã, φ̃, g̃2, µ̃, h̃2, D̃T , and Data

For this step, we can rewrite equation (35) in the following way:

φ(L)(yt − β∗
St

) = µDt + gWthDtvt, vt ∼ i.i.d.N(0, 1), (45)

where β∗
St

=
∑St

j=2 aj with β∗
1 = 0.

When drawing S̃T conditional on all the other variates, equation (45) serves as a usual

model with a Markov-switching latent variable St, whileDt andWt serve as dummy variables.

Furthermore, drawing W̃T conditional on all the other variates, equation (45) serves as a usual

model with a Markov-switching latent variableWt, whileDt and St serve as dummy variables.

Thus, drawing S̃T and W̃T is a standard procedure. Once S̃T and W̃T are drawn, we can

draw p̃S conditional on S̃T and p̃W conditional on W̃T from the full conditional distributions

derived by employing the Dirichlet distributions in equation (28) as priors.

5.2. Drawing Variates Associated with the Mixture of Normals Conditional on

ε̃T = [ ε1 ε2 . . . εT ]′

Conditional on ã, φ̃, σ̃2, S̃T , W̃T and data, we can calculate the error term εt from the

equations in (26) as follows:

εt = φ(L)(yt − a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + . . .+ aK−1

K∑
k=K−1

Sk,t + aKSK,t)
1

gWt

. (46)

Then, based on equation (34), we can draw the variates associated with the mixture

of normals (i.e., µ̃, h̃2, D̃T and α) conditional on ε̃T = [ ε1 ε2 . . . εT ]′. As discussed in

Section 3.1, we are not interested in the marginal distribution of µ′s or h2′s or in the inferences

on Dt. Thus, the label switching problem for Dt is not an issue here. We therefore draw µ̃
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or h̃2 without any identifiability constraints. We proceed with the following procedures in

drawing µ̃, h̃2, D̃T and α:

i) Draw µ̃ based on equation (34), conditional on g̃, h̃2, D̃T , and ε̃T .

ii) Draw h̃2 based on equation (34), conditional on µ̃, g̃2, D̃T , M , and ε̃T .

iii) Draw D̃T and α for the Dirichlet process mixture of normals specified in equation

(31), conditional on µ̃, h̃2, g̃2, and ε̃T , The total number of mixtures (M∗) realized

at a particular MCMC iteration is obtained as a byproduct of drawing D̃T .

Drawing µ̃ and σ̃2 from their full conditional distributions derived based on equation (34)

is standard. The procedure for drawing D̃T and α is based on West et al. (1994), Escobar

and West (1995), and Neal (2000). Details are explained in Appendix C.

5.3. Simulation Study: Performance of the Proposed MCMC Algorithm

In Section 2, we observed considerable biases in the parameter estimates for case #4 with

a sample size of 500, when a normal log-likelihood is maximized but the error distribution

is given by a mixture of normals.

In this section, we perform a simulation study in order to show that the proposed model-

identification schemes and the proposed algorithm work properly. For this purpose, we

generate 100 sets of samples based on the following data generating process, which is the

same as Case #4 of Section 2 (with K = 2, M = 1, and φ(L) = 1 for the model presented

in Section 4):

Data Generating Process

yt = βSt + σε∗t , εt ∼ i.i.d(0, 1), St = 1, 2; t = 1, 2, ..., T,

( yt = β1 + a2S2,t + σε∗t , a2 = β2 − β1 > 0, )

ε∗t |Dt ∼ i.i.d. N(µ∗
Dt
, h∗2Dt

), Dt = 1, 2, 3,

T = 500; β1 = −0.6, β2 = 0.7; σ2 = 1.1; p11 = 0.9, p22 = 0.95,

where S2,t = 1 if St = 2 and S2,t = 0, otherwise; St and Dt are independent of each other
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and pij = Pr[St = j|St−1 = i]. The parameter values associated with the mixture of normals

for ε∗t are also the same as those for Case #4 in Section 2.

Based on the discussions on the identification issues in Section 3, we consider the follow-

ing representation of the model for estimation:

yt = a2S2,t + εt, εt ∼ i.i.d.N(β1, σ
2), a2 > 0,

where we approximate the distribution of et by the Dirichlet process mixture of normals in

equation (31) with the following specification for the base distribution and the concentration

parameter α: 14

G0 ≡ N(−0.6, 5h2
m)IG(

130

2
,
30

2
); α ∼ Gamma(10, 3),

and the priors for a2 and the transition probabilities of St are specified as:

a2 ∼ N(1.3, 0.45)1[a2>0];

[ pS,11 pS,12 ]′ ∼ Dirichlet(9, 1)1[pS,11>0.5]; [ pS,21 pS,12 ]′ ∼ Dirichlet(0.5, 9.5)1[pS,22>0.5].

We apply the above modified model and algorithm to each generated data set. At each

iteration of the MCMC procedure, we draw S̃T , p11, p22, a2; D̃T and the resulting M∗; µm

and h2
m, m = 1, 2, ...,M∗; and α. Then, we calculate β1, β2 and σ2 in the following way:

β1 =
M∗∑
m=1

µ∗
mPr[Dt = m]; β2 = β1 + a2; and σ2 =

M∗∑
m=1

(h∗2
m + (µ∗

m − µ̄∗
m)2)Pr[Dt = m],

where Pr[Dt = m] is the probability of mixture for given M∗ and µ̄∗
m = β1.

When we estimate the model under a normality assumption for the error term, we employ

the following priors for β1 and σ2:

β1 ∼ N(−0.6, 0.45); σ2 ∼ IG(3.4, 2.7),

which are the same as the unconditional distributions for β1 and σ2 implied by our specifi-

cation of the based distribution G0 for the Dirichlet process mixture of normals. The priors

for a2 and the transition probabilities of St are the same as in the proposed model.

14 And the prior distribution of the concentration parameter α implies that the prior mean
for the number of mixture is 3.32 when sample size equal to 500.

25



We obtain the posterior mean of each parameter conditional on each of 100 generated

samples. We then calculate the mean and the standard deviation of 100 posterior means

for each parameter obtained from these 100 samples. This is equivalent to investigating the

sampling moments of the posterior mean for each parameter. The third column of Table 2

reports the sample mean and standard deviation of the posterior means when the distribution

of the error term is erroneously assumed to be normal. The results are almost the same as

those based on the maximum likelihood approach as shown in the 6th column of Table 1 for

T = 500. We have large biases in the parameter estimates. However, the fourth column of

Table 2 shows that, when the non-normality of the error distribution is appropriately taken

care of as outlined in Sections 5.1 and 5.2, these biases almost disappear.

6. An Application to the Growth of Postwar U.S. Industrial Production Index
[1947M1-2017M1]

6.1. Specification for an Empirical Model

We consider the following univariate Markov-switching model for the growth of industrial

production index (∆yt), with a two-state Markov-switching mean (St = 1, 2) and a three-

state Markov-switching variance (Wt = 1, 2, 3): 15

∆yt = β1,Ct + a2,CtS2,t + ut, Ct = 1, 2, 3,

a2,Ct > 0, ∀ t,

ut = φut−1 + gWtu
∗
t , u∗t ∼ i.i.d.(0, σ2

1), |φ| < 1,

(47)

where S2,t = 1 if St = 2 and S2,t = 0, otherwise; β1,Ct is the mean growth rate during

recession and β1,Ct + a2,Ct is the mean growth rate during boom; g2
Wt

is specified in equation

(25) with N = 3; St and Wt are independent. The transitional dynamics of St and Wt are

specified in equation (4) with K = 2 and in equation (22) with N=3, respectively.

Kim and Nelson (1999) show empirical evidence of a narrowing gap between growth

rates of real GDP during recessions and booms. They argue that this narrowing gap is as

15 We allow for a 3-state Markov-switching process for the variance of the shocks in order
to capture the unusually high volatility during the Financial Crisis period. To avoid the
identification problem associated with label switching, we specify the Markov switching
variance of the shocks as in the second equation in (24).
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important as the reduction in the volatility of the shocks as a feature of the Great Moderation.

More recently, by specifying the regime-specific mean growth rates of real GDP to follow

random walks, Eo and Kim (2016) also show that the mean growth rate during boom have

been steadily decreasing along with the long-run mean growth rate since 1947. In order

to incorporate these particular features of the business cycle discussed in Kim and Nelson

(1999) and Eo and Kim (2016), we incorporate two structural breaks with unknown break

points in the mean growth rates for boom and recession. For this purpose, we specify β1,Ct

and a2,Ct in the following way: 16

β1,Ct = γ1 + γ2C2,t + (γ2 + γ3)C3,t,

a2,Ct = (η1 + η2 + η3)C1,t + (η2 + η3)C2,t + η3C3,t,

γ2 > 0, γ3 > 0; η1 > 0, η2 > 0, η3 > 0,

(48)

where

Ck,t =

{
1, if Ct = k; k = 1, 2, 3

0, otherwise,
(49)

and Ct follows a three-state Markov-switching process with absorbing states, as specified

below:

pC,11 > 0.5; pC,12 = 1− pC,11; pC,13 = 0, pC,21 = 0, pC,22 > 0.5; pC,23 = 1− pC,22;

pC,31 = 0, pC,32 = 0, pC,33 = 1,
(50)

where pC,ij = Pr[Ct = j|Ct−1 = i].

Note that the existence of the absorbing states in Ct allows us to identify Ct from the

Markov-switching process St in our model. Furthermore, the specification of β1,Ct and a2,Ct

in equation (48) allows us to handle the label switching problem discussed in Section 3.1. The

ordering constraints in the last line of equation (48) guarantee a narrowing gap between mean

growth rates for booms and recessions. At the same time, they guarantee that a2,Ct > 0, ∀ t,

thereby allowing us to identify regime 2 (i.e., St = 2) as a boom. A graphical illustration

16 Incorporating structural breaks in the mean growth rates for booms or recessions such
that their gap narrows is based on the prior belief that the Great Moderation is not over
with the onset of the Financial Crisis. In his recent study on whether the Great Moderation
is over, Clark (2009) concludes that, over time, macroeconomic volatility will likely undergo
occasional shifts between high and low levels with low volatility being the norm, suggesting
that the Great Moderation is not over. Gadea-Rivas et al. (2014) also provide empirical
evidence suggesting that output volatility remains subdued despite the turmoil created by
the Financial Crisis of 2008.
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of the resulting implied priors for the mean growth rates during recessions and booms is

depicted in Figure 3.

By substituting the first two equations in (48) into the first equation in (47), we obtain

∆yt = γ1 + γ2C2,t + (γ2 + γ3)C3,t

+ ((η1 + η2 + η3)C1,t + (η2 + η3)C2,t + η3C3,t)S2,t + ut.
(51)

Then, by defining et = γ1 + ut and εt = (1− φ)γ1/gWt + u∗t and rearranging terms, equation

(51) can be rewritten as:

Empirical Model with Transformed Parameters

∆yt = γ2

3∑
j=2

Cj,t + γ3C3,t + (η1C1,t + η2

2∑
j=1

Cj,t + η3

3∑
j=1

Cj,t)S2,t + et,

et = φet−1 + gWtεt, |φ| < 1, εt|Wt ∼ i.i.d.(
1

gWt

(1− φ)γ1, σ
2
1),

g2
n = g2

n−1(1 + bn), g2
1 = 1, bn > 0, n = 2, 3,

(52)

where the unknown distribution of the error term εt conditional on Wt is approximated

by the Dirichlet Process mixture of normals specified in equation (31). We note that the

independence of Ct from St or Wt and the existence of the absorbing states for Ct allow us to

identify Ct from St or Wt. Given the truncated normal prior, each of the γ and η parameters

can be sequentially drawn from appropriate truncated normal distributions as explained in

Section 3.1, without resorting to the rejection sampling.

Lastly, note that allowing for structural breaks in the mean growth rates for booms and

recessions results in structural breaks in the long-run mean growth rate. Based on equation

(51), this time-varying long-run mean growth rate (τt) at each iteration of the MCMC can

be obtained by:

τt =

= γ1 + γ2Pr[Ct = 2|IT ] + (γ2 + γ3)Pr[Ct = 3|IT ]

+ ((η1 + η2 + η3)Pr[Ct = 1|IT ] + (η2 + η3)Pr[Ct = 2|IT ] + η3Pr[Ct = 3|IT ])Pr[St = 2],
(53)

where γ1 can be recovered as in the equation in footnote 10, with M referring to the realized

number of mixtures at a particular iteration of the MCMC; IT refers to information up to
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T ; and Pr[St = 2] refers to the steady-state probability that St = 2, which is given by

Pr[St = 2] = (1− pS,11)/(2− pS,11 − pS,22).

6.2. Empirical Results

Data employed is the seasonally-adjusted postwar U.S. industrial production index,

which is obtained from the Federal Reserve Bank of St. Louis economic database (FRED),

and the sample covers the period 1947M1-2019M9. Figure 4 depicts the data. We estimate

both the proposed model and the model with a normality assumption for the error term.

We obtain 500,000 MCMC draws and discard the first 100,000 to guarantee the convergence

of the sampler and to avoid the effect of the initial values. All the inferences are based on

the remaining 400,000 draws. We first consider the following tight priors:

Priors #1: Tight Priors

γ2 ∼ N(0.1, 0.1)[γ2>0], γ3 ∼ N(0.2, 0.2)[γ3>0],

η1 ∼ N(1.5, 0.1)[η1>0], η2 ∼ N(0.5, 0.2)[η2>0], η3 ∼ N(0.2, 0.5)[η3>0],

φ ∼ N(0.5, 0.5)[|φ|<1], (1 + b2) ∼ IG(4, 4), (1 + b3) ∼ IG(4, 8),

[PS,11, PS,12]
′ ∼ Dir(0.45, 0.05)PS,11>0.5, [PS,21, PS,22]

′ ∼ Dir(0.05, 0.45)PS,22>0.5,

[PW,11, PW,12, PW,13]
′ ∼ Dir(0.9, 0.05, 0.05)PW,11>0.5,

[PW,21, PW,22, PW,23]
′ ∼ Dir(0.05, 0.9, 0.05)PW,22>0.5,

[PW,31, PW,32, PW,33]
′ ∼ Dir(0.05, 0.05, 0.9)PW,33>0.5,

PC,11 ∼ Dir(9.9, 0.1)PC,11>0.5, PC,22 ∼ Dir(9.9, 0.1)PC,22>0.5,

(µm, h
2
m) ∼ G0 ≡ N(−0.5, 3h2

m)IG(17, 4)

where the base distribution specified in the last line implies the following unconditional

distribution for γ1 and σ2
1:

γ1 ∼ N(−0.5, 0.2) and σ2
1 ∼ IG(4.2),

which are used as the priors for γ1 and σ2
1 in the model with a normality assumption.

Table 3.A reports the posterior moments of the parameters obtained under tight priors for

a model with a normality assumption. When we performed a normality test for the posterior
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means of the standardized errors (i.e.,
u∗t
σ1

, t = 1, 2, ..., T , from the last line of equation (47)),

however, the null was rejected at a 5% significance level. This provides a justification for

employing the proposed model in which we approximate the unknown error term with the

Dirichlet process mixture of normals. Table 3.B reports the corresponding posterior moments

for the proposed model. For most of the parameters, the posterior standard deviations are

larger for the model with normality assumption than for the proposed model. The posterior

mean for the total number of mixture is slightly higher than 3, and the null hypothesis of

normality is not rejected for the posterior means of the standardized errors. 17 These results

suggest that the Dirichlet process mixture normals model reasonably well approximates the

unknown distribution of the error term. Furthermore, a Bayesian model selection criterion

(Watanabe-Akaike information criterion or WAIC by Watanabe (2010)) strongly prefers the

proposed model.

Figure 5.A depicts the posterior probabilities of recession from the two models under the

tight priors. The shaded areas represent the NBER recessions. Estimates of the recession

probabilities from the proposed model are much sharper and agree much more closely with

the NBER reference cycles than those from a model with a normality assumption for the

error term.

In order to examine the robustness of the results to the priors employed, we next consider

the following loose priors for some of the parameters by keeping the priors for the rest of the

parameters unchanged:

Prior #2: Loose Priors

γ2 ∼ N(0.1, 1)[γ2>0], γ3 ∼ N(0.2, 2)[γ3>0],

η1 ∼ N(1.5, 1)[η1>0], η2 ∼ N(0.5, 2)[η2>0], η3 ∼ N(0.2, 4)[η3>0],

[PS,11, PS,12]
′ ∼ Dir(0.09, 0.01)PS,11>0.5, [PS,21, PS,22]

′ ∼ Dir(0.01, 0.09)PS,22>0.5,

PC,11 ∼ Dir(0.99, 0.01)PC,11>0.5, PC,22 ∼ Dir(0.99, 0.01)PC,22>0.5

Figure 5.B compares the posterior probabilities of recession from the two competing

17 To calculate the Jarque-Bera test statistic for the normality test, we use the posterior
mean of the standardized errors (v∗t = 1

hDt
(εt − 1

gWt
µDt)) obtained based on equation (34),

for t = 1, 2, ..., T .
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models under the loose priors. For the model with a normality assumption in the error term,

the inference on the recession probabilities deteriorates considerably with the loose priors.

For the proposed model, however, the regime probabilities under the loose priors are almost

the same as those under the tight priors, and we continue to have sharp inferences on the

recession probabilities. That is, that the proposed model is robust to the priors employed,

while the model with a normality assumption is very sensitive to the priors.

Lastly, Figure 6 depicts the posterior means for the time-varying volatility of the errors

and those for the long-run mean growth of the IP series obtained based on equation (53),

all of which are obtained from the proposed model under the tight priors. 18 The high and

the medium volatility regimes are mostly focused on the period prior to the mid 1980s. In

most of the post-1984 period, the low volatility regime dominates except for a few episodes

of medium or high volatility that include the Great recession. The second panel of Figure

6 demonstrates a pattern for a steadily decreasing long-run mean growth rate, which is

consistent with Stock and Watson (2012) and Eo and Kim (2016).

7. Concluding Remarks

In their dynamic factor models of business cycle, Kim and Yoo (1996), Chauvet (1998),

and Kim and Nelson (1998) assume that each individual coincident variable consists of

an idiosyncratic component and a common factor component that is subject to Markov-

switching mean. They estimate their models either by the maximum likelihood method or

by the Bayesian method, under the assumption of normally distributed errors. They all show

that their estimates of turning points are much sharper and agree much more closely with

the NBER reference cycles than the estimates from a univariate Markov switching model

do. The intuition is that the idiosyncratic components that are not related to the business

cycle or the outliers in the individual series are averaged out cross sectionally.

Within our univariate Markov-switching framework, approximating the error distribution

by the mixture of normals allows us to effectively control for the irregular components or

the outliers in the error term. This leads to sharp and accurate inferences on the regime

18 The results were almost the same as in the case of the loss priors.
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probabilities just like the dynamic factor models do. It also allows the performance of the

proposed model to be robust to the priors employed for the parameters of the model.

32



Appendix A. Derivation of Equation (16)

Equation (8) and the transition probabilities in equation (4) allow us to represent the

dynamics of the vector [S1,t S2,t . . . SK,t ]′ in the following VAR form:



S1,t

S2,t

...

SK,t

 =



pS,11 pS,21 . . . pS,K1

pS,12 pS,22 . . . pS,K2

...
...

. . .
...

pS,1K pS,2K . . . pS,KK





S1,t−1

S2,t−1

...

SK,t−1

+



ν1,t

ν2,t

...

νK,t

 , (A1)

where [ ν1 ν2 . . . νK ]′ is a vector of martingale difference sequences.

As
∑K

j=1 pij = 1 and
∑K

j=1 Sjt = 1, the first row in equation (A1) does not carry additional

information beyond that contained in the rest of the rows. Thus, by imposing the constraint

S1,t−1 = 1−∑K
j=2 Sj,t−1 on the second through K − th rows of equation (A1), we obtain the

following dynamics for [S2,t S3,t . . . SK,t ]′:


S2,t

...

SK,t

 =


pS,12

...

pS,1K

+


(pS,22 − pS,12) . . . (pS,K2 − pS,12)

...
. . .

...

(pS,2K − pS,1K) . . . (pS,KK − pS,1K)



S2,t−1

...

SK,t−1

+


ν2,t

...

νK,t

 , (A2)

(
S̄t = Q0 +Q1S̄t−1 + ν̄t,

)
which is given in equation (16).

Appendix B. Derivation of Equation (30)

Given the prior for (pD,1, pD,2, . . . , pD,M) in equation (29), the marginal distribution of

pD,m can be derived as:

pD,m ∼ Beta(
α

M
,
α

M
(M − 1)), m = 1, . . . ,M, (B1)

with the following density function:
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f(pD,m) ∝ p
α
M

−1

D,m (1− pD,m)
α
M

(M−1)−1. (B2)

The likelihood of D̃6=t given wm can be expressed as:

f(D̃6=t|pD,m) ∝ p
Tm,6=t

D,m (1− pD,m)T−1−T6=t,m , (B3)

where T6=t,m denotes the total number of observations that belong to class m in a sample

that excludes period t.

By combining equations (B2) and (B3), we have:

f(pD,m|D̃6=t) ∝ f(pD,m)Pr(D̃6=t|pD,m)

= p
Tm,6=t+

α
M

−1

D,m (1− pD,m)T−1−Tm,6=t+
α
M

(M−1)−1,
(B4)

which suggests that

pD,m|D̃6=t ∼ Beta(T6=t,m +
α

M
, T − 1− Tm,6=t +

α

M
(M − 1)), (B5)

from which we can derive the following probability of interest in equation (30):

Pr[Dt = m|D̃6=t] = E(pD,m|D̃6=t)

=
Tm,6=t + α

M

T − 1 + α
.

(B6)

Appendix C. Details on Drawing D̃T and the Concentration Parameter α condi-

tional on µ̃, h̃2, and ẽT
19

C.1. Drawing D̃T Conditional on α

If the total number of mixtures, M , were fixed as in the case of the finite mixture of

normals, it would be straightforward to draw Dt based on the following full conditional

distribution of Dt:

19 This section is based on West et al. (1994), Escobar and West (1995), and Neal (2000).
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f(Dt|µ̃, σ̃2, D̃6=t, εt) ∝ f(Dt|D̃6=t, α)f(εt|µ̃, σ̃2, Dt), Dt = 1, 2, ...,M, (C1)

where D̃6=t is the collection of mixture indicators in the sample excluding Dt; f(Dt|D̃6=t, α)

is the prior probability in equation (30); and f(εt|µ̃, σ̃2, Dt = m) = 1√
2πσ2

m

exp
[
− (εt−µm)2

2σ2
m

]
.

That is, we could draw Dt based on the following probabilities:

Pr[Dt = m|εt, µ̃, σ̃
2, D̃6=t] =

Pr[Dt = m|D̃6=t]f(εt|µ̃, σ̃2, Dt = m)∑M
m=1 Pr[Dt = m|D̃6=t]f(εt|µm, σ2

m, Dt = m)
, m = 1, 2, ...,M.

(C2)

For the Dirichlet process mixture of normals, in which M is a random variable, Neal

(2000) suggests that equation (C1) should be replaced by:

f(Dt|µ̃, σ̃2, D6=t, α, εt) ∝ f(Dt|α, D̃6=t)f(εt|µ̃, σ̃2, Dt), Dt = 1, . . . ,M∗
6=t,M

∗
6=t + 1, (C3)

whereM∗
6=t is the number of distinctive classes (or mixtures) in the sample that exclude period

t; and f(Dt|D̃6=t, α) is the prior probability given in equation (32). Here, when Dt = M∗
6=t+1,

it means that period t belongs to a new class that does not exist in D̃6=t. Given equation

(C3), we can then draw Dt using the following probabilities:

Pr[Dt = m|µ̃, σ̃2,D6=t, α, εt] =
Pr[Dt = m|D̃6=t, α]f(εt|µ̃, σ̃2, Dt)∑M∗
6=t

+1

m=1 Pr[Dt = m|D̃6=t, α]f(εt|µ̃, σ̃2, Dt)
,

m = 1, 2, ...,M∗
6=t,M

∗
6=t + 1.

(C4)

Depending on whether Dt belongs to the existing class (m = 1, 2, ..., or M∗
6=t) or a new

class (m = M∗
6=t + 1), we have the following two conditional densities for εt:

f(εt|µ̃, σ̃2, Dt = m) = fN(εt|µm, σ
2
m), for m = 1, 2, ...,M∗

6=t; (C5)

f(εt|µ̃, σ̃2, Dt = M∗
6=t + 1) =

∫
fN(εt|µM∗

6=t
+1, σ

2
M∗

6=t
+1)dG0(µM∗

6=t
+1, σ

2
M∗

6=t
+1), (C6)
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where fN(·|µj, σ
2
j ) refers to a normal density function with mean µj and variance σ2

j . The

intuition for the integral in equation (C6) is that, when period t belongs to a new class of

normal with unknown mean and variance, we evaluate the density of εt by taking average of

the densities for all possible values of mean and variance drawn from the base distribution

G0. This integral can be evaluated by Monte Carlo simulation as suggested by West et al.

(1994). 20

By denoting D̃T as a collection of the mixture indicators (or class indicators) drawn

from the previous iteration of the MCMC, we can draw Dt by repeating the following steps

sequentially for t = 1, 2, ..., T , starting with t = 1:

i) Count the total number of distinctive classes in D̃6=t and set it as M∗
6=t.

ii) Draw Dt according to the probabilities in equation (C4), and replace the t−th ele-

ment of D̃T with the drawn Dt.

iii) If Dt is generated to be M∗
6=t + 1, it means that period t belongs to a new class that

does not exists in D̃6=t. In this case, we have to generate intermediate values for the

mean (µM∗
6=t

+1) and variance (σ2
M∗

6=t
+1) that are associated with this new class. They

can be generated from the following posterior distributions:

σ2
M∗

6=t
+1 |εt ∼ IG

(
1 + νh

2
,
δh + (εt − λ0/gWt)

2/(1 + ψ0/g
2
Wt

)

2

)
, (C7)

µM∗
6=t

+1|σ2
M∗

6=t
+1, εt ∼ N

(
λ0 + ψ0εt/gWt

1 + ψ0/g2
Wt

,
ψ0

1 + ψ0/g2
Wt

σ2
M∗

6=t
+1

)
, (C8)

which can be easily derived given the joint prior G0 for (µM∗
6=t

+1, σ
2
M∗

6=t
+1) in equation

(31) and a single observation εt.

iv) Set t=t+1, and go to i).

20 The integral in equation (C6) can be approximated by

∫
fN(εt|µM∗

6=t
+1, σ

2
M∗

6=t
+1)dG0(µM∗

6=t
+1, σ

2
M∗

6=t
+1) ≈

1

R

R∑
i=1

fN(εt|µi, σ
2
i ),

where µi and σ2
i are drawn from the base distribution G0 in equation (31) and R is large

enough. Alternatively, Escobar and West (1995) analytically derive that this integral results
in a density function for a scaled and shifted Student’s t-distribution.
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At the end of the iteration, we have a new set of D̃T . The number of distinctive classes

in D̃T is the realized M or the realized total number of mixtures.

C.2. Drawing α conditional on D̃T

In case α is treated as random, its conjugate prior is the Gamma distribution,

α ∼ Gamma(a, b) (C9)

Drawing α conditional on D̃T is equivalent to drawing α conditional on M , the total

number of mixtures or classes in the sample. 21 In this section, we explain an algorithm for

generating α as proposed by Escobar and West (1995).

Given the prior distribution of α in equation (C9), the prior density is:

f(α) ∝ αa−1 exp(−αb), (C10)

and as derived by Antoniak (1974), the likelihood for M is

f(M |α) ∝ αM Γ(α)

Γ(α+ T )
, (C11)

where Γ(·) refers to the Gamma function and T is the sample size. Thus, Escobar and West

(1995) derive the posterior density of α as: 22

f(α|M) ∝ f(α)f(M |α)

∝ αa+M−2 exp(−αb)(α+ T )
∫ 1

0
xα(1− x)T−1dx,

(C12)

21 Note that the posterior distribution of α depends only on M , for given D̃T .
22 Note that gamma functions in equation (C11) can be written as

Γ(α)

Γ(α+ T )
=

(α+ T )β(α+ 1, T )

αΓ(T )
,

where β(., .) refers to the beta function, and

β(α+ 1, T ) =
∫ 1

0
xα(1− x)T−1dx
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which implies that the posterior distribution of α is the marginal distribution obtained from

a joint distribution of α and a continuous quantity η such that

f(α, η|M) ∝ αa+M−1 exp(−αb)(α+ T )ηα(1− η)T−1, 0 < η < 1. (C13)

As shown in their Appendix B, Escobar and West (1995) further derive the conditional

posterior densities f(η|α,M) and f(α|η,M), and show that

η|α,M ∼ Beta(α+ 1, T ) (C14)

and

α|η,M ∼ rηG(a+M, b− ln(η)) + (1− rη)G(a+M − 1, b− ln(η)), (C15)

where the latter is a mixture of two Gamma distributions with rη/(1 − rη) = (a + M −

1)/{T [b− ln(η)]}.

Thus, the following two-step algorithm can be employed to draw α:

i) Conditional on α generated in the previous iteration of the Gibbs sampling, draw an

intermediate random variable η from the distribution given in equation (C14).

ii) Conditional on η and the realized number of mixture, M , draw α from the distribu-

tion given in equation (C15).
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Table 1. Maximizing the Normal Log Likelihood Function When the Error
Distribution Is Potentially Non-normal: Monte Carlo Experiment

T = 500

True Case #1 Case #2 Case #3 Case #4

β1 -0.6 -0.609 (0.130) -0.656 (0.555) -0.983 (0.780) -1.121 (0.892)

β2 0.7 0.708 (0.088) 0.707 (0.083) 0.713 (0.117) 0.7213 (0.127)

σ2 1.1 1.087 (0.090) 1.074 (0.140) 0.967 (0.210) 0.907 (0.264)

p11 0.9 0.892 (0.049) 0.892 (0.056) 0.788 (0.203) 0.754 (0.228)

p22 0.95 0.942 (0.029) 0.946 (0.023) 0.928 (0.038) 0.920 (0.043)

T = 5, 000

True Case #1 Case #2 Case #3 Case #4

β1 -0.6 -0.602 (0.039) -0.610 (0.041) -0.742 (0.246) -0.959 (0.629)

β2 0.7 0.701 (0.025) 0.696 (0.024) 0.730 (0.046) 0.735 (0.088)

σ2 1.1 1.100 (0.027) 1.100 (0.049) 1.013 (0.107) 0.944 (0.176)

p11 0.9 0.899 (0.012) 0.902 (0.012) 0.848 (0.098) 0.788 (0.169)

p22 0.95 0.949 (0.007) 0.951 (0.006) 0.934 (0.020) 0.921 (0.033)

T = 50, 000

True Case #1 Case #2 Case #3 Case #4

β1 -0.6 -0.602 (0.013) -0.610 (0.025) -0.694 (0.096) -0.758 (0.169)

β2 0.7 0.700 (0.009) 0.695 (0.024) 0.734 (0.035) 0.764 (0.065)

σ2 1.1 1.100 (0.008) 1.098 (0.038) 1.028 (0.074) 0.966 (0.137)

p11 0.9 0.900 (0.004) 0.901 (0.029) 0.868 (0.033) 0.835 (0.069)

p22 0.95 0.950 (0.002) 0.951 (0.030) 0.936 (0.015) 0.920 (0.031)

Note:
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1. This table reports quasi maximum likelihood estimation results under different error dis-
tributions. Each cell contains the average of the 1,000 point estimates for each parameter
and the root mean squared error of the estimates from the true value (in parentheses).

2. Case #1: normal distribution; Case #2: t-distribution; Case #3: χ2 distribution; Case
#4: mixture of 3 normals.
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Table 2. Performance of the Proposed Algorithm [Simulation Study]

Data Generating Process

yt = βSt + σεt, εt ∼ i.i.d.(0, 1), St = 1, 2; t = 1, 2, . . . , T,

Pr(St = j|St−1 = i) = ps,ij; i, j = 1, 2,

εt|Dt ∼ i.i.d.N(µ∗
Dt
, h∗2Dt

), Dt = 1, 2, 3,

µ∗
1 = 1.05, µ∗

2 = 0.1, µ∗
3 = −1.35; h∗2

1 = 0.2, h∗2
2 = 0.05, h∗2

3 = 1.695;

pD,1 = 0.2, pD,2 = 0.6, pD,3 = 0.2

Parameters True Value Average Posterior Mean and RMSE

MCMC(1) MCMC(2)

β1 -0.6 -1.113 (0.856) -0.601 (0.088)

β2 0.7 0.682 (0.132) 0.703 (0.069)

σ2 1.1 0.923 (0.231) 1.156 (0.168)

ps,11 0.9 0.774 (0.172) 0.897 (0.032)

ps,22 0.95 0.924 (0.034) 0.944 (0.018)

Note:
1. MCMC(1) denotes the MCMC estimation result based on an erroneous assumption that

the error term is normally distributed. MCMC(2) denotes the MCMC estimation result
that accounts the non-normality in the error term. Each cell contains the average of the
100 posterior means and root mean squared errors (in parentheses).

2. Each MCMC posterior mean is calculated obtained based on 100,000 MCMC draws after
50,000 burn-in draws.
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Table 3.A. Bayesian Inference of a Model under Normality Assumption [Log Dif-
ference of the U.S. Industrial Production Index, 1947M1-2019M9]: Tight Priors

Prior Posterior
Parameter Mean SD Mean SD Median 90% HPDI

γ1 -0.500 0.447 -0.647 0.309 -0.659 [-1.139,-0.126]

γ2 0.100 0.316 0.345 0.246 0.309 [0.020,0.620]

γ3 0.200 0.447 0.246 0.191 0.205 [0.020,0.620]

η1 1.500 0.316 1.224 0.439 1.227 [0.550,1.936]

η2 0.500 0.447 0.461 0.220 0.436 [0.136,0.859]

η3 0.200 0.708 0.329 0.189 0.326 [0.035,0.644]

φ 0.500 0.708 0.211 0.064 0.209 [0.109,0.319]

σ2
1 0.667 0.471 0.508 0.026 0.507 [0.467,0.553]

σ2
2 0.889 0.984 0.877 0.118 0.866 [0.703,1.089]

σ2
3 1.184 1.849 1.980 0.253 1.948 [1.629,2.437]

ps,00 0.900 0.245 0.873 0.081 0.889 [0.708,0.968]

ps,11 0.900 0.245 0.960 0.037 0.966 [0.911,1.000]

pw,11 0.900 0.212 0.971 0.090 0.897 [0.676,0.963]

pw,12 0.050 0.154 0.013 0.023 0.000 [0.000,0.063]

pw,21 0.050 0.154 0.091 0.083 0.070 [0.000,0.260]

pw,22 0.900 0.212 0.869 0.090 0.897 [0.676,0.963]

pw,32 0.050 0.154 0.202 0.101 0.195 [0.035,0.384]

pw,33 0.900 0.212 0.768 0.089 0.778 [0.600,0.896]

pc,11 0.990 0.030 0.995 0.014 0.998 [0.983,1.000]

pc,22 0.990 0.030 0.950 0.064 0.977 [0.818,0.999]
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Table 3.A. (Continued).

WAIC 1823

JB 7.96 (0.019)

Note:
1. Out of 500,000 MCMC draws, the first 100,000 are discarded and inferences are based

on the remaining 400,000 draws.
2. SD refers to standard deviation.
3. HPDI refers to a highest posterior density interval.
4. WAIC refers to the Watanabe-Akaike Information Criterion.
5. JB refers to the Jarque-Bera test statistic for a normality test. P-value is reported in

the parenthesis.
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Table 3.B. Bayesian Inference of Proposed Model [Log Difference of the U.S.
Industrial Production Index, 1947M1-2019M9]: Tight Priors

Prior Posterior
Parameter Mean SD Mean SD Median 90% HPDI

γ1 -0.500 0.447 -0.667 0.250 -0.676 [-1.049,-0.232]

γ2 0.100 0.316 0.346 0.214 0.336 [0.032,0.714]

γ3 0.200 0.447 0.133 0.109 0.107 [0.009,0.348]

η1 1.500 0.316 0.736 0.267 0.717 [0.346,1.196]

η2 0.500 0.447 0.395 0.140 0.383 [0.184,0.647]

η3 0.200 0.708 0.399 0.186 0.421 [0.098,0.786]

φ 0.500 0.708 0.125 0.046 0.124 [0.050,0.202]

σ2
1 0.651 0.470 0.476 0.021 0.476 [0.443,0.513]

σ2
2 0.866 0.985 0.772 0.104 0.768 [0.615,0.950]

σ2
3 1.154 1.790 1.948 0.238 1.925 [1.602,2.372]

ps,00 0.900 0.245 0.881 0.039 0.885 [0.812,0.938]

ps,11 0.900 0.245 0.964 0.016 0.967 [0.935,0.983]

pw,11 0.900 0.212 0.977 0.018 0.980 [0.946,0.998]

pw,12 0.050 0.154 0.006 0.018 0.001 [0.000,0.041]

pw,21 0.050 0.154 0.055 0.068 0.037 [0.000,0.185]

pw,22 0.900 0.212 0.912 0.069 0.931 [0.777,0.974]

pw,32 0.050 0.154 0.190 0.092 0.186 [0.044,0.352]

pw,33 0.900 0.212 0.773 0.080 0.781 [0.625,0.889]

pc,11 0.990 0.030 0.998 0.002 0.999 [0.994,1.000]

pc,22 0.990 0.030 0.985 0.036 0.996 [0.915,1.000]
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Table 3.B. (Continued).

M∗ 3.259 (1.227)

WAIC 1615

JB 2.614 (0.271)

Note:
1. Out of 500,000 MCMC draws, the first 100,000 are discarded and inferences are based

on the remaining 400,000 draws.
2. SD refers to standard deviation.
3. HPDI refers to a highest posterior density interval.
4. M∗ refers to the posterior average number of non-empty mixtures, standard deviation is

reported in parenthesis.
5. WAIC refers to the Watanabe-Akaike Information Criterion.
6. JB refers to the Jarque-Bera test statistic for a normality test. P-value is reported in

the parenthesis.
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Figure 1. Smoothed Probabilities of Regime 1 from Maximum Likelihood Estimation of the Model  
under Normality Assumption [T=500] 

 
                                                                 (i)  DGP #1:  Normal Distribution 

 
                                                                   (ii)  DGP #2: Student’s t Distribution 

 
                                                                (iii)  DGP #3:  Log Chi-Square Distribution 

 
                                                                (iv)  DGP #4: Mixture of  Normals 

                   Note: The shaded area denotes the periods associated with regime 1. 
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Figure 2. Dealing with the Label Switching Problem:  Posterior distributions of  𝜷𝟏 and 𝜷𝟐  

𝑦௧ =  𝛽ௌ
+ 𝜎𝜖௧,   𝜖௧~i. i. d. N(0,1),  t=1,2,…,100 

𝛽ଵ = −1, 𝛽ଶ = 1.5;     2 = 2;     P(𝑆௧ = i|𝑆௧ିଵ = i) = 0.6, i = 1,2   

  
(i) Joint Rejection Method  

 

         
(ii) Permutation Sampling 

 

 
  (iii)  Proposed Sampling 

  



Figure 3.  Graphical Illustration of the Priors for the Narrowing Gap between Mean Growth rates 
During  Boom and Recession 
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Figure 4. U.S. Industrial Production (IP) Index and Its Growth Rate [1947M1-2019M3] 

 

  (i)  Logarithm of U.S. Seasonally Adjusted Industrial Production (IP) Index 

 

  (ii)   IP Index growth 

       Note: The shaded area denotes the NBER recession date.  
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Figure 5.A.  Posterior Probabilities of Recession based from the Two Competing Models : Tight 
Priors 

 

                                             (i)   Model with  Normally Distributed Errors 

 

                  (ii)  Model with Mixture of  Normals for Error Terms: Proposed Model 

     Note: The shaded area denotes the NBER recession date. 
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Figure 5.B. Posterior Probabilities of Recession from the Two Competing Models: Loose Priors 

 

                                           (i)  Model with  Normally Distributed Errors 

 

(ii)  Model with Mixture of Normals for Error Terms: Proposed Model 

Note: The shaded area denotes the NBER recession date. 
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Figure 6.  Time-Varying Volatility and Long-Run Mean Growth Rate of IP:  Proposed Model [Loose  
Priors] 

 

(i)  Volatility of Error Term 

 

(ii)  Long-Run Mean Growth Rate 
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